Correlation between the band gap expansion and melting temperature depression of nanostructured semiconductors

被引:4
作者
Li, Jianwei [1 ]
Zhao, Xinsheng [1 ]
Liu, Xinjuan [2 ]
Zheng, Xuejun [3 ]
Yang, Xuexian [4 ]
Zhu, Zhe [5 ]
机构
[1] Jiangsu Normal Univ, Sch Phys & Elect Engn, Lab Quantum Design Funct Mat, Xuzhou 221116, Peoples R China
[2] China Jiliang Univ, Coll Mat Sci & Engn, Ctr Coordinat Bond & Elect Engn, Hangzhou 310018, Zhejiang, Peoples R China
[3] Xiangtan Univ, Sch Mech Engn, Xiangtan 411105, Hunan, Peoples R China
[4] Jishou Univ, Dept Phys, Jishou 416000, Hunan, Peoples R China
[5] Xiangtan Univ, Sch Mat Sci & Engn, Xiangtan 411105, Hunan, Peoples R China
关键词
QUANTUM DOTS; SIZE DEPENDENCE; NANOCRYSTALS; THERMODYNAMICS; NANOPARTICLES; GROWTH; ARRAYS; POINT; WIRES;
D O I
10.1063/1.4931571
中图分类号
O59 [应用物理学];
学科分类号
摘要
The band gap and melting temperature of a semiconductor are tunable with the size and shape of the specimen at the nanometer scale, and related mechanisms remain as yet unclear. In order to understand the common origin of the size and shape effect on these two seemingly irrelevant properties, we clarify, correlate, formulate, and quantify these two properties of GaAs, GaN, InP, and InN nanocrystals from the perspectives of bond order-length-strength correlation using the core-shell configuration. The consistency in the theoretical predictions, experimental observations, and numerical calculations verify that the broken-bond-induced local bond contraction and strength gain dictates the band gap expansion, while the atomic cohesive energy loss due to bond number reduction depresses the melting point. The fraction of the under-coordinated atoms in the skin shell quantitatively determines the shape and size dependency. The atomic under-coordination in the skin down to a depth of two atomic layers inducing a change in the local chemical bond is the common physical origin. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 41 条
[1]  
[Anonymous], THESIS U CALIFORNIA
[2]   Size and Shape Dependence on Melting Temperature of Gallium Nitride Nanoparticles [J].
Antoniammal, Paneerselvam ;
Arivuoli, Dakshanamoorthy .
JOURNAL OF NANOMATERIALS, 2012, 2012
[3]   Size-dependent band gap of colloidal quantum dots [J].
Baskoutas, S ;
Terzis, AF .
JOURNAL OF APPLIED PHYSICS, 2006, 99 (01)
[4]   THERMODYNAMIC THEORY OF SIZE DEPENDENCE OF MELTING TEMPERATURE IN METALS [J].
COUCHMAN, PR ;
JESSER, WA .
NATURE, 1977, 269 (5628) :481-483
[5]   Colloidal GaAs quantum wires: Solution-liquid-solid synthesis and quantum-confinement studies [J].
Dong, Angang ;
Yu, Heng ;
Wang, Fudong ;
Buhro, William E. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (18) :5954-5961
[6]   Relaxation of hcp(0001) surfaces: A chemical view [J].
Feibelman, PJ .
PHYSICAL REVIEW B, 1996, 53 (20) :13740-13746
[7]   Crystal structure and chemical correlation [J].
Goldschmidt, VM .
BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT, 1927, 60 :1263-1296
[8]   Synthesis of size-selected, surface-passivated InP nanocrystals [J].
Guzelian, AA ;
Katari, JEB ;
Kadavanich, AV ;
Banin, U ;
Hamad, K ;
Juban, E ;
Alivisatos, AP ;
Wolters, RH ;
Arnold, CC ;
Heath, JR .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (17) :7212-7219
[9]   Molecular dynamics simulation for evaluating melting point of wurtzite-type GaN crystal [J].
Harafuji, K ;
Tsuchiya, T ;
Kawamura, K .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (05) :2501-2512
[10]   (T-BU)2GAAS(T-BU)2 - A VOLATILE MONOMERIC ARSINOGALLANE [J].
HIGA, KT ;
GEORGE, C .
ORGANOMETALLICS, 1990, 9 (01) :275-277