CHD8 regulates neurodevelopmental pathways associated with autism spectrum disorder in neural progenitors

被引:239
|
作者
Sugathan, Aarathi [1 ,2 ,3 ]
Biagioli, Marta [1 ,3 ]
Golzio, Christelle [5 ]
Erdin, Serkan [1 ,2 ]
Blumenthal, Ian [1 ,2 ]
Manavalan, Poornima [1 ]
Ragavendran, Ashok [1 ,2 ]
Brand, Harrison [1 ,2 ,3 ]
Lucente, Diane [1 ]
Miles, Judith [7 ,8 ,9 ]
Sheridan, Steven D. [1 ,2 ,3 ]
Stortchevoi, Alexei [1 ,2 ]
Kellis, Manolis [10 ,11 ]
Haggarty, Stephen J. [1 ,2 ,3 ,11 ]
Katsanis, Nicholas [5 ,6 ]
Gusella, James F. [1 ,4 ,11 ]
Talkowski, Michael E. [1 ,2 ,3 ,11 ]
机构
[1] Massachusetts Gen Hosp, Ctr Human Genet Res, Mol Neurogenet Unit, Boston, MA 02114 USA
[2] Massachusetts Gen Hosp, Ctr Human Genet Res, Psychiat & Neurodev Genet Unit, Boston, MA 02114 USA
[3] Harvard Univ, Sch Med, Dept Neurol, Boston, MA 02115 USA
[4] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[5] Duke Univ, Ctr Human Dis Modeling, Durham, NC 27710 USA
[6] Duke Univ, Dept Cell Biol, Durham, NC 27710 USA
[7] Univ Missouri Hosp & Clin, Thompson Ctr Autism & Neurodev Disorders, Dept Pediat, Columbia, MO 65201 USA
[8] Univ Missouri Hosp & Clin, Thompson Ctr Autism & Neurodev Disorders, Dept Med Genet, Columbia, MO 65201 USA
[9] Univ Missouri Hosp & Clin, Thompson Ctr Autism & Neurodev Disorders, Dept Pathol, Columbia, MO 65201 USA
[10] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[11] Broad Inst MIT & Harvard, Cambridge, MA 02142 USA
基金
美国国家科学基金会;
关键词
CHD8; NPCs; RNA-seq; ChIP-seq; autism; DE-NOVO MUTATIONS; NETWORK; GENES; KNOWLEDGEBASE; SCHIZOPHRENIA; CHILDREN; RISK;
D O I
10.1073/pnas.1405266111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Truncating mutations of chromodomain helicase DNA-binding protein 8 (CHD8), and of many other genes with diverse functions, are strong-effect risk factors for autism spectrum disorder (ASD), suggesting multiple mechanisms of pathogenesis. We explored the transcriptional networks that CHD8 regulates in neural progenitor cells (NPCs) by reducing its expression and then integrating transcriptome sequencing (RNA sequencing) with genome-wide CHD8 binding (ChIP sequencing). Suppressing CHD8 to levels comparable with the loss of a single allele caused altered expression of 1,756 genes, 64.9% of which were up-regulated. CHD8 showed widespread binding to chromatin, with 7,324 replicated sites that marked 5,658 genes. Integration of these data suggests that a limited array of direct regulatory effects of CHD8 produced a much larger network of secondary expression changes. Genes indirectly down-regulated (i.e., without CHD8-binding sites) reflect pathways involved in brain development, including synapse formation, neuron differentiation, cell adhesion, and axon guidance, whereas CHD8-bound genes are strongly associated with chromatin modification and transcriptional regulation. Genes associated with ASD were strongly enriched among indirectly down-regulated loci (P < 10(-8)) and CHD8-bound genes (P = 0.0043), which align with previously identified coexpression modules during fetal development. We also find an intriguing enrichment of cancer-related gene sets among CHD8-bound genes (P < 10(-10)). In vivo suppression of chd8 in zebrafish produced macrocephaly comparable to that of humans with inactivating mutations. These data indicate that heterozygous disruption of CHD8 precipitates a network of gene-expression changes involved in neurodevelopmental pathways in which many ASD-associated genes may converge on shared mechanisms of pathogenesis.
引用
收藏
页码:E4468 / E4477
页数:10
相关论文
共 50 条
  • [41] Biological Pathways Associated with Vitamins in Autism Spectrum Disorder
    Darlan Gusso
    Gustavo Ricardo Krupp Prauchner
    Alessandra Schmitt Rieder
    Angela T.S. Wyse
    Neurotoxicity Research, 2023, 41 : 730 - 740
  • [42] Impaired neurodevelopmental pathways in autism spectrum disorder: a review of signaling mechanisms and crosstalk
    Kumar, Santosh
    Reynolds, Kurt
    Ji, Yu
    Gu, Ran
    Rai, Sunil
    Zhou, Chengji J.
    JOURNAL OF NEURODEVELOPMENTAL DISORDERS, 2019, 11 (1)
  • [43] Biological Pathways Associated with Vitamins in Autism Spectrum Disorder
    Gusso, Darlan
    Prauchner, Gustavo Ricardo Krupp
    Rieder, Alessandra Schmitt
    Wyse, Angela T. S.
    NEUROTOXICITY RESEARCH, 2023, 41 (06) : 730 - 740
  • [44] Autism Comorbidities: Role of CHD8 during the Development of the Enteric Nervous System
    Hayot, G. L.
    Weber, C.
    Golzio, C.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 71 - 71
  • [45] Mutations and Modeling of the Chromatin Remodeler CHD8 Define an Emerging Autism Etiology
    Barnard, Rebecca A.
    Pomaville, Matthew B.
    O'Roak, Brian J.
    FRONTIERS IN NEUROSCIENCE, 2015, 9
  • [46] From autism spectrum disorder to monogenic neurodevelopmental disorder
    Stojanovic, Gordana
    Maver, Ales
    Hodzic, Alenka
    Peterlin, Borut
    Miljanovic, Olivera
    Jovanovic, Jelena
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2024, 32 : 191 - 191
  • [47] Sex bias in autism: new insights from Chd8 mutant mice?
    Andreae, Laura C.
    Basson, M. Albert
    NATURE NEUROSCIENCE, 2018, 21 (09) : 1144 - 1146
  • [48] Sex bias in autism: new insights from Chd8 mutant mice?
    Laura C. Andreae
    M. Albert Basson
    Nature Neuroscience, 2018, 21 : 1144 - 1146
  • [49] CHD8 haploinsufficiency links autism to transient alterations in excitatory and inhibitory trajectories
    Villa, Carlo Emanuele
    Cheroni, Cristina
    Dotter, Christoph P.
    Lopez-Tobon, Alejandro
    Oliveira, Barbara
    Sacco, Roberto
    Yahya, Aysan Cerag
    Morandell, Jasmin
    Gabriele, Michele
    Tavakoli, Mojtaba R.
    Lyudchik, Julia
    Sommer, Christoph
    Gabitto, Mariano
    Danzl, Johann G.
    Testa, Giuseppe
    Novarino, Gaia
    CELL REPORTS, 2022, 39 (01):
  • [50] Truncating CHD8 variants cause a Sotos-like syndrome with autism
    Douzgou, S.
    Liang, H.
    Metcalfe, K.
    Somarathi, S.
    Tischkowitz, M.
    Mohamed, W.
    Kini, U.
    McKee, S.
    Yates, L.
    Bertoli, M.
    Lynch, S.
    Holder, S.
    Banka, S.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1380 - 1381