Enhanced target normal sheath acceleration based on the laser relativistic self-focusing

被引:23
|
作者
Zou, D. B. [1 ]
Zhuo, H. B. [1 ]
Yang, X. H. [1 ]
Shao, F. Q. [1 ]
Ma, Y. Y. [1 ]
Yu, T. P. [1 ]
Wu, H. C. [2 ,3 ]
Yin, Y. [1 ]
Ge, Z. Y. [1 ]
Li, X. H. [1 ]
机构
[1] Natl Univ Def Technol, Coll Sci, Changsha 410073, Hunan, Peoples R China
[2] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Dept Phys, Hangzhou 310027, Peoples R China
基金
中国国家自然科学基金;
关键词
ION-ACCELERATION; PULSE; GENERATION;
D O I
10.1063/1.4882245
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The enhanced target normal sheath acceleration of ions in laser target interaction via the laser relativistic self-focusing effect is investigated by theoretical analysis and particle-in-cell simulations. The temperature of the hot electrons in the underdense plasma is greatly increased due to the occurrence of resonant absorption, while the electron-betatron-oscillation frequency is close to its witnessed laser frequency [Pukhov et al., Phys. Plasma 6, 2847 (1999)]. While these hot electrons penetrate through the backside solid target, a stronger sheath electric field at the rear surface of the target is induced, which can accelerate the protons to a higher energy. It is also shown that the optimum length of the underdense plasma is approximately equal to the self-focusing distance. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Enhanced target normal sheath acceleration using colliding laser pulses
    Ferri, J.
    Siminos, E.
    Fulop, T.
    COMMUNICATIONS PHYSICS, 2019, 2
  • [2] Target normal sheath acceleration with a large laser focal diameter
    Park, J.
    Bin, J. H.
    Steinke, S.
    Ji, Q.
    Bulanov, S. S.
    Thevenet, M.
    Vay, J. -L.
    Schenkel, T.
    Geddes, C. G. R.
    Schroeder, C. B.
    Esarey, E.
    PHYSICS OF PLASMAS, 2020, 27 (12)
  • [3] Laser-driven ion acceleration via target normal sheath acceleration in the relativistic transparency regime
    Poole, P. L.
    Obst, L.
    Cochran, G. E.
    Metzkes, J.
    Schlenvoigt, H-P
    Prencipe, I.
    Kluge, T.
    Cowan, T.
    Schramm, U.
    Schumacher, D. W.
    Zeil, K.
    NEW JOURNAL OF PHYSICS, 2018, 20
  • [4] Relativistic Gaussian laser beam self-focusing in collisional quantum plasmas
    Zare, S.
    Rezaee, S.
    Yazdani, E.
    Anvari, A.
    Sadighi-Bonabi, R.
    LASER AND PARTICLE BEAMS, 2015, 33 (03) : 397 - 403
  • [5] Enhanced target normal sheath acceleration of protons from intense laser interaction with a cone-tube target
    Xiao, K. D.
    Huang, T. W.
    Zhou, C. T.
    Qiao, B.
    Wu, S. Z.
    Ruan, S. C.
    He, X. T.
    AIP ADVANCES, 2016, 6 (01):
  • [6] Relativistic laser self-focusing in a plasma with transverse magnetic field
    Hassoon, Khaleel I.
    Sharma, Ashok K.
    Khamis, Raad A.
    PHYSICA SCRIPTA, 2010, 81 (02)
  • [7] Enhanced laser intensity and ion acceleration due to self-focusing in relativistically transparent ultrathin targets
    Frazer, T. P.
    Wilson, R.
    King, M.
    Butler, N. M. H.
    Carroll, D. C.
    Duff, M. J.
    Higginson, A.
    Jarrett, J.
    Davidson, Z. E.
    Armstrong, C.
    Liu, H.
    Neely, D.
    Gray, R. J.
    McKenna, P.
    PHYSICAL REVIEW RESEARCH, 2020, 2 (04):
  • [8] Enhancement of target normal sheath acceleration in laser multi-channel target interaction
    Zou, D. B.
    Yu, D. Y.
    Jiang, X. R.
    Yu, M. Y.
    Chen, Z. Y.
    Deng, Z. G.
    Yu, T. P.
    Yin, Y.
    Shao, F. Q.
    Zhuo, H. B.
    Zhou, C. T.
    Ruan, S. C.
    PHYSICS OF PLASMAS, 2019, 26 (12)
  • [9] Relativistic self-focusing and self-channeling of Gaussian laser beam in plasma
    Singh, A.
    Walia, K.
    APPLIED PHYSICS B-LASERS AND OPTICS, 2010, 101 (03): : 617 - 622
  • [10] Relativistic self-focusing of cosh-Gaussian laser beams in a warm quantum plasma
    Asgharnejad, Davod
    Mohsenpour, Taghi
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,