Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21CIP1, but not p16INK4a

被引:963
作者
Herbig, U
Jobling, WA
Chen, BPC
Chen, DJ
Sedivy, JM [1 ]
机构
[1] Brown Univ, Dept Biochem Mol Biol & Cell Biol, Providence, RI 02912 USA
[2] Lawrence Berkeley Natl Lab, Div Life Sci, Berkeley, CA 94720 USA
关键词
D O I
10.1016/S1097-2765(04)00256-4
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cellular senescence can be triggered by telomere shortening as well as a variety of stresses and signaling imbalances. We used multiparameter single-cell detection methods to investigate upstream signaling pathways and ensuing cell cycle checkpoint responses in human fibroblasts. Telomeric foci containing multiple DNA damage response factors were assembled in a subset of senescent cells and signaled through ATM to p53, upregulating p21 and causing G1 phase arrest. Inhibition of ATM expression or activity resulted in cell cycle reentry, indicating that stable arrest requires continuous signaling. ATR kinase appears to play a minor role in normal cells but in the absence of ATM elicited a delayed G2 phase arrest. These pathways do not affect expression of p16, which was upregulated in a telomere- and DNA damage-independent manner in a subset of cells. Distinct senescence programs can thus progress in parallel, resulting in mosaic cultures as well as individual cells responding to multiple signals.
引用
收藏
页码:501 / 513
页数:13
相关论文
共 37 条
[1]   Extensive allelic variation and ultrashort telomeres in senescent human cells [J].
Baird, DM ;
Rowson, J ;
Wynford-Thomas, D ;
Kipling, D .
NATURE GENETICS, 2003, 33 (02) :203-207
[2]   Permanent cell cycle exit in G2 phase after DNA damage in normal human fibroblasts [J].
Baus, F ;
Gire, V ;
Fisher, D ;
Piette, J ;
Dulic, V .
EMBO JOURNAL, 2003, 22 (15) :3992-4002
[3]   Reversal of human cellular senescence:: roles of the p53 and p16 pathways [J].
Beauséjour, CM ;
Krtolica, A ;
Galimi, F ;
Narita, M ;
Lowe, SW ;
Yaswen, P ;
Campisi, J .
EMBO JOURNAL, 2003, 22 (16) :4212-4222
[4]   Bypass of senescence after disruption of p21(CIP1/WAF1) gene in normal diploid human fibroblasts [J].
Brown, JP ;
Wei, WY ;
Sedivy, JM .
SCIENCE, 1997, 277 (5327) :831-834
[5]   Requirement for p53 and p21 to sustain G2 arrest after DNA damage [J].
Bunz, F ;
Dutriaux, A ;
Lengauer, C ;
Waldman, T ;
Zhou, S ;
Brown, JP ;
Sedivy, JM ;
Kinzler, KW ;
Vogelstein, B .
SCIENCE, 1998, 282 (5393) :1497-1501
[6]   Cancer and ageing: Rival demons? [J].
Campisi, J .
NATURE REVIEWS CANCER, 2003, 3 (05) :339-349
[7]   Protection of mammalian telomeres [J].
de Lange, T .
ONCOGENE, 2002, 21 (04) :532-540
[8]   DNA damage-induced cell-cycle phase regulation of p53 and p21waf1 in normal and ATM-defective cells [J].
Delia, D ;
Fontanella, E ;
Ferrario, C ;
Chessa, L ;
Mizutani, S .
ONCOGENE, 2003, 22 (49) :7866-7869
[9]   A DNA damage checkpoint response in telomere-initiated senescence [J].
di Fagagna, FD ;
Reaper, PM ;
Clay-Farrace, L ;
Fiegler, H ;
Carr, P ;
von Zglinicki, T ;
Saretzki, G ;
Carter, NP ;
Jackson, SP .
NATURE, 2003, 426 (6963) :194-198
[10]   Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells [J].
di Fagagna, FD ;
Hande, MP ;
Tong, WM ;
Roth, D ;
Lansdorp, PM ;
Wang, ZQ ;
Jackson, SP .
CURRENT BIOLOGY, 2001, 11 (15) :1192-1196