Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle

被引:22
作者
Della Pietra, Francesco [1 ]
Di Blasio, Giuseppina [2 ]
Gavitone, Nunzia [1 ]
机构
[1] Univ Napoli Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, Via Cintia, I-80126 Naples, Italy
[2] Univ Campania Luigi Vanvitelli, Viale Lincoln 5, I-81100 Caserta, Italy
关键词
Dirichlet eigenvalues; anisotropic operators; optimal estimates; TORSIONAL RIGIDITY; BOUNDS; INEQUALITY; SETS;
D O I
10.1515/anona-2017-0281
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study optimal lower and upper bounds for functionals involving the first Dirichlet eigenvalue lambda(F) (p, Omega) of the anisotropic p-Laplacian, 1 < p < +infinity. Our aim is to enhance, by means of the P-function method, how it is possible to get several sharp estimates for lambda(F)(p, Omega) in terms of several geometric quantities associated to the domain. The P-function method is based on a maximum principle for a suitable function involving the eigenfunction and its gradient.
引用
收藏
页码:278 / 291
页数:14
相关论文
共 16 条
  • [1] Sharp estimates for the first Robin eigenvalue of nonlinear elliptic operators
    Della Pietra, Francesco
    Piscitelli, Gianpaolo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 386 : 269 - 293
  • [2] Polya-type estimates for the first Robin eigenvalue of elliptic operators
    Della Pietra, Francesco
    ARCHIV DER MATHEMATIK, 2024, 123 (02) : 185 - 197
  • [3] Estimates of the first Dirichlet eigenvalue from exit time moment spectra
    Hurtado, A.
    Markvorsen, S.
    Palmer, V.
    MATHEMATISCHE ANNALEN, 2016, 365 (3-4) : 1603 - 1632
  • [4] Estimates of Dirichlet eigenvalues for a class of sub-elliptic operators
    Chen, Hua
    Chen, Hong-Ge
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 122 (06) : 808 - 847
  • [5] Sharp estimates for oscillatory integral operators via polynomial partitioning
    Guth, Larry
    Hickman, Jonathan
    Iliopoulou, Marina
    ACTA MATHEMATICA, 2019, 223 (02) : 251 - 376
  • [6] Sharp bounds for the first eigenvalue and the torsional rigidity related to some anisotropic operators
    Della Pietra, Francesco
    Gavitone, Nunzia
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (2-3) : 194 - 209
  • [7] Strong Maximum Principle and Boundary Estimates for Nonhomogeneous Elliptic Equations
    Lundstroem, Niklas L. P.
    Olofsson, Marcus
    Toivanen, Olli
    POTENTIAL ANALYSIS, 2024, 60 (01) : 425 - 443
  • [8] A family of degenerate elliptic operators: Maximum principle and its consequences
    Birindelli, Isabeau
    Galise, Giulio
    Ishii, Hitoshi
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (02): : 417 - 441
  • [9] The Weak Maximum Principle for Degenerate Elliptic Operators in Unbounded Domains
    Dolcetta, Italo Capuzzo
    Vitolo, Antonio
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (02) : 412 - 431
  • [10] Global Lorentz estimates for nonuniformly nonlinear elliptic equations via fractional maximal operators
    Tran, Minh-Phuong
    Nguyen, Thanh-Nhan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)