Numerical pump-probe experiments of laser-excited silicon in nonequilibrium phase

被引:69
作者
Sato, S. A. [1 ]
Yabana, K. [1 ,2 ]
Shinohara, Y. [1 ,3 ]
Otobe, T. [4 ]
Bertsch, G. F. [5 ,6 ]
机构
[1] Univ Tsukuba, Grad Sch Pure & Appl Sci, Tsukuba, Ibaraki 3058571, Japan
[2] Univ Tsukuba, Ctr Computat Sci, Tsukuba, Ibaraki 3058577, Japan
[3] Max Planck Inst Mikrostrukturphys, D-06112 Halle, Germany
[4] JAEA, Kansai Photon Sci Inst, Kyoto 6190615, Japan
[5] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[6] Univ Washington, Inst Nucl Theory, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; REAL-SPACE; TIME; DIELECTRICS;
D O I
10.1103/PhysRevB.89.064304
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We calculate the dielectric response of crystalline silicon following irradiation by a high-intensity laser pulse, modeling the dynamics by the time-dependentKohn-Sham equations in the presence of the laser field. Pump-probe measurements of the response are numerically simulated by including both pump and probe externals fields in the simulation. As expected, the excited silicon shows features of an electron-hole plasma of nonequilibrium phase in its response, characterized by a negative divergence in the real part of the dielectric function at small frequencies. The response to the probe pulse depends on the polarization of the pump pulse. We also find that the imaginary part of the dielectric function can be negative, particularly for the parallel polarization of pump and probe fields. We compare the calculated response with a simple Drude model. The real part of the dielectric function is well fitted by the model, treating the effective mass as a fitting parameter while taking electron density from the calculation. The fitted effective masses are consistent with carrier-band dispersions.
引用
收藏
页数:8
相关论文
共 39 条
[1]   Real-time approach to the optical properties of solids and nanostructures: Time-dependent Bethe-Salpeter equation [J].
Attaccalite, C. ;
Gruening, M. ;
Marini, A. .
PHYSICAL REVIEW B, 2011, 84 (24)
[2]   Femtosecond-laser ablation dynamics of dielectrics: basics and applications for thin films [J].
Balling, P. ;
Schou, J. .
REPORTS ON PROGRESS IN PHYSICS, 2013, 76 (03)
[3]   Analysis of the Vignale-Kohn current functional in the calculation of the optical spectra of semiconductors [J].
Berger, J. A. ;
de Boeij, P. L. ;
van Leeuwen, R. .
PHYSICAL REVIEW B, 2007, 75 (03)
[4]  
Bertsch G. F., 2006, INTRO COMPUTATIONAL
[5]   Real-space, real-time method for the dielectric function [J].
Bertsch, GF ;
Iwata, JI ;
Rubio, A ;
Yabana, K .
PHYSICAL REVIEW B, 2000, 62 (12) :7998-8002
[6]   Intense few-cycle laser fields: Frontiers of nonlinear optics [J].
Brabec, T ;
Krausz, F .
REVIEWS OF MODERN PHYSICS, 2000, 72 (02) :545-591
[7]   Femtosecond filamentation in transparent media [J].
Couairon, A. ;
Mysyrowicz, A. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 441 (2-4) :47-189
[8]   Finite-temperature quasiparticle self-consistent GW approximation [J].
Faleev, Sergey V. ;
van Schilfgaarde, Mark ;
Kotani, Takao ;
Leonard, Francois ;
Desjarlais, Michael P. .
PHYSICAL REVIEW B, 2006, 74 (03)
[9]   The physics of ultra-short laser interaction with solids at non-relativistic intensities [J].
Gamaly, E. G. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2011, 508 (4-5) :91-243
[10]   Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses [J].
Kaiser, A ;
Rethfeld, B ;
Vicanek, M ;
Simon, G .
PHYSICAL REVIEW B, 2000, 61 (17) :11437-11450