Genome-wide identification, phylogenetic and expression analysis of the heat shock transcription factor family in bread wheat (Triticum aestivum L.)

被引:36
作者
Zhou, Min [1 ,2 ,3 ]
Zheng, Shigang [1 ]
Liu, Rong [1 ,2 ]
Lu, Jing [1 ,2 ]
Lu, Lu [1 ]
Zhang, Chihong [1 ]
Liu, Zehou [1 ]
Luo, Congpei [1 ,2 ]
Zhang, Lei [1 ]
Yant, Levi [3 ]
Wu, Yu [1 ]
机构
[1] Chinese Acad Sci, Chengdu Inst Biol, 9,Sect 4 South RenMin Rd, Chengdu 610041, Sichuan, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Univ Nottingham, Sch Life Sci, Nottingham NG7 2RD, England
基金
欧洲研究理事会;
关键词
Wheat; Hsf; Genome-wide analysis; Expression profiles; INTRACELLULAR-DISTRIBUTION; DEVELOPMENTAL REGULATION; CADMIUM TOLERANCE; STRESS RESPONSE; WHOLE-GENOME; DRAFT GENOME; GENE; PROTEIN; EVOLUTION; DUPLICATION;
D O I
10.1186/s12864-019-5876-x
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundEnvironmental toxicity from non-essential heavy metals such as cadmium (Cd), which is released from human activities and other environmental causes, is rapidly increasing. Wheat can accumulate high levels of Cd in edible tissues, which poses a major hazard to human health. It has been reported that heat shock transcription factor A 4a (HsfA4a) of wheat and rice conferred Cd tolerance by upregulating metallothionein gene expression. However, genome-wide identification, classification, and comparative analysis of the Hsf family in wheat is lacking. Further, because of the promising role of Hsf genes in Cd tolerance, there is need for an understanding of the expression of this family and their functions on wheat under Cd stress. Therefore, here we identify the wheat TaHsf family and to begin to understand the molecular mechanisms mediated by the Hsf family under Cd stress.ResultsWe first identified 78 putative Hsf homologs using the latest available wheat genome information, of which 38 belonged to class A, 16 to class B and 24 to class C subfamily. Then, we determined chromosome localizations, gene structures, conserved protein motifs, and phylogenetic relationships of these TaHsfs. Using RNA sequencing data over the course of development, we surveyed expression profiles of these TaHsfs during development and under different abiotic stresses to characterise the regulatory network of this family. Finally, we selected 13 TaHsf genes for expression level verification under Cd stress using qRT-PCR.ConclusionsTo our knowledge, this is the first report of the genome organization, evolutionary features and expression profiles of the wheat Hsf gene family. This work therefore lays the foundation for targeted functional analysis of wheat Hsf genes, and contributes to a better understanding of the roles and regulatory mechanism of wheat Hsfs under Cd stress.
引用
收藏
页数:18
相关论文
共 56 条
[1]   A seed-specific heat-shock transcription factor involved in developmental regulation during embryogenesis in sunflower [J].
Almoguera, C ;
Rojas, A ;
Díaz-Martín, J ;
Prieto-Dapena, P ;
Carranco, R ;
Jordano, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (46) :43866-43872
[2]   MEME: discovering and analyzing DNA and protein sequence motifs [J].
Bailey, Timothy L. ;
Williams, Nadya ;
Misleh, Chris ;
Li, Wilfred W. .
NUCLEIC ACIDS RESEARCH, 2006, 34 :W369-W373
[3]   Heat stress response in plants:: a complex game with chaperones and more than twenty heat stress transcription factors [J].
Baniwal, SK ;
Bharti, K ;
Chan, KY ;
Fauth, M ;
Ganguli, A ;
Kotak, S ;
Mishra, SK ;
Nover, L ;
Port, M ;
Scharf, KD ;
Tripp, J ;
Weber, C ;
Zielinski, D ;
von Koskull-Döring, P .
JOURNAL OF BIOSCIENCES, 2004, 29 (04) :471-487
[4]   Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b overexpression enhances water productivity, resistance to drought, and infection [J].
Bechtold, Ulrike ;
Albihlal, Waleed S. ;
Lawson, Tracy ;
Fryer, Michael J. ;
Sparrow, Penelope A. C. ;
Richard, Francois ;
Persad, Ramona ;
Bowden, Laura ;
Hickman, Richard ;
Martin, Cathie ;
Beynon, Jim L. ;
Buchanan-Wollaston, Vicky ;
Baker, Neil R. ;
Morison, James I. L. ;
Schoeffl, Friedrich ;
Ott, Sascha ;
Mullineaux, Philip M. .
JOURNAL OF EXPERIMENTAL BOTANY, 2013, 64 (11) :3467-3481
[5]   Analysis of the breadwheat genome using whole-genome shotgun sequencing [J].
Brenchley, Rachel ;
Spannagl, Manuel ;
Pfeifer, Matthias ;
Barker, Gary L. A. ;
D'Amore, Rosalinda ;
Allen, Alexandra M. ;
McKenzie, Neil ;
Kramer, Melissa ;
Kerhornou, Arnaud ;
Bolser, Dan ;
Kay, Suzanne ;
Waite, Darren ;
Trick, Martin ;
Bancroft, Ian ;
Gu, Yong ;
Huo, Naxin ;
Luo, Ming-Cheng ;
Sehgal, Sunish ;
Gill, Bikram ;
Kianian, Sharyar ;
Anderson, Olin ;
Kersey, Paul ;
Dvorak, Jan ;
McCombie, W. Richard ;
Hall, Anthony ;
Mayer, Klaus F. X. ;
Edwards, Keith J. ;
Bevan, Michael W. ;
Hall, Neil .
NATURE, 2012, 491 (7426) :705-710
[6]   Heat shock factors in rice (Oryza sativa L.): genome-wide expression analysis during reproductive development and abiotic stress [J].
Chauhan, Harsh ;
Khurana, Neetika ;
Agarwal, Pinky ;
Khurana, Paramjit .
MOLECULAR GENETICS AND GENOMICS, 2011, 286 (02) :171-187
[7]   Zinc-Finger Transcription Factor ZAT6 Positively Regulates Cadmium Tolerance through the Glutathione-Dependent Pathway in Arabidopsis [J].
Chen, Jian ;
Yang, Libo ;
Yan, Xingxing ;
Liu, Yunlei ;
Wang, Ren ;
Fan, Tingting ;
Ren, Yongbing ;
Tang, Xiaofeng ;
Xiao, Fangming ;
Liu, Yongsheng ;
Cao, Shuqing .
PLANT PHYSIOLOGY, 2016, 171 (01) :707-719
[8]   SG2-Type R2R3-MYB Transcription Factor MYB15 Controls Defense-Induced Lignification and Basal Immunity in Arabidopsis [J].
Chezem, William R. ;
Memon, Altamash ;
Li, Fu-Shuang ;
Weng, Jing-Ke ;
Clay, Nicole K. .
PLANT CELL, 2017, 29 (08) :1907-1926
[9]   Functional interaction between two transcription factors involved in the developmental regulation of a small heat stress protein gene promoter [J].
Díaz-Martín, J ;
Almoguera, CN ;
Prieto-Dapena, P ;
Espinosa, JM ;
Jordano, J .
PLANT PHYSIOLOGY, 2005, 139 (03) :1483-1494
[10]   Genome plasticity a key factor in the success of polyploid wheat under domestication [J].
Dubcovsky, Jorge ;
Dvorak, Jan .
SCIENCE, 2007, 316 (5833) :1862-1866