Dissipativity-Based Resilient Filtering of Periodic Markovian Jump Neural Networks With Quantized Measurements

被引:67
作者
Lu, Renquan [1 ,2 ]
Tao, Jie [3 ]
Shi, Peng [4 ,5 ]
Su, Hongye [3 ]
Wu, Zheng-Guang [3 ]
Xu, Yong [1 ,2 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Key Lab IoT Informat Proc, Guangzhou 510006, Guangdong, Peoples R China
[3] Zhejiang Univ, Inst Cyber Syst & Control, Natl Lab Ind Control Technol, Yuquan Campus, Hangzhou 310027, Zhejiang, Peoples R China
[4] Harbin Engn Univ, Coll Automat, Harbin 150001, Heilongjiang, Peoples R China
[5] Victoria Univ, Coll Engn & Sci, Melbourne, Vic 8001, Australia
基金
中国国家自然科学基金; 澳大利亚研究理事会;
关键词
Dissipativity; neural networks; periodic Markov jump systems; quantization; resilient filter; LINEAR-SYSTEMS; TIME-SYSTEMS; STABILITY; DELAY; DESIGN; STABILIZATION;
D O I
10.1109/TNNLS.2017.2688582
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The problem of dissipativity-based resilient filtering for discrete-time periodic Markov jump neural networks in the presence of quantized measurements is investigated in this paper. Due to the limited capacities of network medium, a logarithmic quantizer is applied to the underlying systems. Considering the fact that the filter is realized through a network, randomly occurring parameter uncertainties of the filter are modeled by two mode-dependent Bernoulli processes. By establishing the mode-dependent periodic Lyapunov function, sufficient conditions are given to ensure the stability and dissipativity of the filtering error system. The filter parameters are derived via solving a set of linear matrix inequalities. The merits and validity of the proposed design techniques are verified by a simulation example.
引用
收藏
页码:1888 / 1899
页数:12
相关论文
共 45 条
[1]   H∞ filtering of periodic Markovian jump systems: Application to filtering with communication constraints [J].
Aberkane, Samir ;
Dragan, Vasile .
AUTOMATICA, 2012, 48 (12) :3151-3156
[2]  
Böhm C, 2009, LECT NOTES CONTR INF, V384, P99, DOI 10.1007/978-3-642-01094-1_8
[3]  
Bouguila N., 2011, 2011 INT C COMMUNICA, P1
[4]   Nonfragile H∞ Filter Design for T-S Fuzzy Systems in Standard Form [J].
Chang, Xiao-Heng ;
Yang, Guang-Hong .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (07) :3448-3458
[5]   Non-fragile fuzzy H∞ filter design for nonlinear continuous-time systems with D stability constraints [J].
Chang, Xiao-Heng ;
Yang, Guang-Hong .
SIGNAL PROCESSING, 2012, 92 (02) :575-586
[6]   Nonfragile H∞ Filtering of Continuous-Time Fuzzy Systems [J].
Chang, Xiao-Heng ;
Yang, Guang-Hong .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2011, 59 (04) :1528-1538
[7]   Periodic input estimation for linear periodic systems: Automotive engine applications [J].
Chauvin, Jonathan ;
Corde, Gilles ;
Petit, Nicolas ;
Rouchon, Pierre .
AUTOMATICA, 2007, 43 (06) :971-980
[8]   Adaptive Consensus Control for a Class of Nonlinear Multiagent Time-Delay Systems Using Neural Networks [J].
Chen, C. L. Philip ;
Wen, Guo-Xing ;
Liu, Yan-Jun ;
Wang, Fei-Yue .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2014, 25 (06) :1217-1226
[9]  
Chen CM, 2016, INT J INNOV COMPUT I, V12, P569
[10]   Robust stability and control of uncertain linear discrete-time periodic systems with time-delay [J].
de Souza, Carlos E. ;
Coutinho, Daniel .
AUTOMATICA, 2014, 50 (02) :431-441