Feasibility of GaAs-based metal strip surface plasmon nano-lasers

被引:5
作者
Lafone, Lucas [1 ]
Sidiropoulos, Themistoklis P. H. [1 ]
Hamm, Joachim M. [1 ]
Oulton, Rupert F. [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
gallium arsenide; III-V semiconductors; laser beams; laser modes; optical fabrication; optical losses; ridge waveguides; semiconductor lasers; surface plasmons; waveguide lasers; nanophotonics; GaAs-based metallic strip surface plasmon nanolasers; IIIaEuro"V semiconductor materials; fabrication technologies; design technologies; ridge waveguide laser; semiconductor slab waveguide; mode formation; mode characteristics; hybrid mode; internal coupling; strong lateral mode confinement; high propagation losses; surface plasmon modes; realistic gain model; confinement factor; carrier concentrations; bound mode propagation losses; single lateral mode operation; high confinement-to-loss figure of merit; straightforward in-situ fabrication; temperature 293 K to 298 K; GaAs; WAVE-GUIDE; GAIN; PROPAGATION; CONFINEMENT;
D O I
10.1049/iet-opt.2013.0069
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The authors present a theoretical analysis of metallic strip surface plasmon nano-lasers that are compatible with III-V semiconductor materials and fabrication technologies. The design mimics a ridge waveguide laser, where the ridge is a metallic strip that sits on top of a semiconductor slab waveguide. We discuss the formation and characteristics of a mode that is bound to the metallic strip and evaluate the possibility of compensating its propagation loss with the gain from the semiconductor slab. We find that the bound mode is a hybrid of the modes of the metallic strip and those of the semiconductor slab and that by varying the internal coupling, it is possible to engineer extremely strong lateral mode confinement while also mitigating the high propagation losses that are typically associated with surface plasmon modes. Using a realistic gain model for GaAs and a new analysis of the confinement factor, we find that carrier concentrations in the region of 3 x 10(18) cm(-3) can compensate for the bound mode's propagation losses, in the region of 1000 cm(-1), at room temperature. This design has many desirable features including single lateral mode operation, a high confinement-to-loss figure of merit and the potential for relatively straightforward in-situ fabrication.
引用
收藏
页码:122 / 128
页数:7
相关论文
共 33 条
[1]   Active Plasmonics: Surface Plasmon Interaction With Optical Emitters [J].
Ambati, Muralidhar ;
Genov, Dentcho A. ;
Oulton, Rupert F. ;
Zhang, Xiang .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2008, 14 (06) :1395-1403
[2]  
[Anonymous], 1999, CLASSICAL ELECTRODYN
[3]   Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems [J].
Bergman, DJ ;
Stockman, MI .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[4]  
Bian Y., 2013, PHYS STATUS SOLIDI A, V5, pn/a
[5]   ANALYSIS OF SEMICONDUCTOR MICROCAVITY LASERS USING RATE-EQUATIONS [J].
BJORK, G ;
YAMAMOTO, Y .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1991, 27 (11) :2386-2396
[6]  
Chow W. W., 1994, SEMICONDCUTOR LASER
[7]   Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection [J].
Ding, K. ;
Liu, Z. C. ;
Yin, L. J. ;
Hill, M. T. ;
Marell, M. J. H. ;
van Veldhoven, P. J. ;
Noetzel, R. ;
Ning, C. Z. .
PHYSICAL REVIEW B, 2012, 85 (04)
[8]   Active metal strip hybrid plasmonic waveguide with low critical material gain [J].
Gao, Linfei ;
Tang, Liangxiao ;
Hu, Feifei ;
Guo, Ruimin ;
Wang, Xingjun ;
Zhou, Zhiping .
OPTICS EXPRESS, 2012, 20 (10) :11487-11495
[9]   Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides [J].
Hill, Martin T. ;
Marell, Milan ;
Leong, Eunice S. P. ;
Smalbrugge, Barry ;
Zhu, Youcai ;
Sun, Minghua ;
van Veldhoven, Peter J. ;
Geluk, Erik Jan ;
Karouta, Fouad ;
Oei, Yok-Siang ;
Notzel, Richard ;
Ning, Cun-Zheng ;
Smit, Meint K. .
OPTICS EXPRESS, 2009, 17 (13) :11107-11112
[10]   OPTICAL CONSTANTS OF NOBLE METALS [J].
JOHNSON, PB ;
CHRISTY, RW .
PHYSICAL REVIEW B, 1972, 6 (12) :4370-4379