Formation of the ∼350-kDa Apg12-Apg5•Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast

被引:355
作者
Kuma, A
Mizushima, N
Ishihara, N
Ohsumi, Y
机构
[1] Natl Inst Basic Biol, Dept Cell Biol, Okazaki, Aichi 4448585, Japan
[2] Grad Univ Adv Studies, Sch Life Sci, Dept Mol Biomech, Okazaki, Aichi 4448585, Japan
[3] Japan Sci & Technol Corp, PRESTO, Kawaguchi 3320012, Japan
关键词
D O I
10.1074/jbc.M111889200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Autophagy, responsible for the delivery of cytoplasmic components to the lysosome/vacuole for degradation, is the major degradative pathway in eukaryotic cells. This process requires a ubiquitin-like protein conjugation system, in which Apg12 is covalently bound to Apg5. In the yeast Saccharomyces cerevisiae, the Apg12-Apg5 conjugate further interacts with a small coiled-coil protein, Apg16. The Apg12-Apg5 and Apg16 are localized in the cytosol and pre-autophagosomal structures and play an essential role in autophagosome formation. Here we show that the Apg12-Apg5 conjugate and Apg16 form a similar to350-kDa complex in the cytosol. Because Apg16 was suggested to form a homo-oligomer, we generated an in vivo system that allowed us to control the oligomerization state of Apg16. With this system, we demonstrated that formation of the similar to350-kDa complex and autophagic activity depended on the oligomerization state of Apg16. These results suggest that the Apg12-Apg5 conjugate and Apg16 form a multimeric complex mediated by the Apg16 homo-oligomer, and formation of the similar to350-kDa complex is required for autophagy in yeast.
引用
收藏
页码:18619 / 18625
页数:7
相关论文
共 30 条
[1]   A versatile synthetic dimerizer for the regulation of protein-protein interactions [J].
Amara, JF ;
Clackson, T ;
Rivera, VM ;
Guo, T ;
Keenan, T ;
Natesan, S ;
Pollock, R ;
Yang, W ;
Courage, NL ;
Holt, DA ;
Gilman, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :10618-10623
[2]   Two distinct pathways for targeting proteins from the cytoplasm to the vacuole/lysosome [J].
Baba, M ;
Osumi, M ;
Scott, SV ;
Klionsky, DJ ;
Ohsumi, Y .
JOURNAL OF CELL BIOLOGY, 1997, 139 (07) :1687-1695
[3]   Contributions of distinct quaternary contacts to cooperative operator binding by Mnt repressor [J].
Berggrun, A ;
Sauer, RT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2301-2305
[4]   Modulation of the oligomerization state of the bovine F1-ATPase inhibitor protein, IF1, by pH [J].
Cabezon, E ;
Butler, PJG ;
Runswick, MJ ;
Walker, JE .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2000, 275 (33) :25460-25464
[5]   Redesigning an FKBP-ligand interface to generate chemical dimerizers with novel specificity [J].
Clackson, T ;
Yang, W ;
Rozamus, LW ;
Hatada, M ;
Amara, JF ;
Rollins, CT ;
Stevenson, LF ;
Magari, SR ;
Wood, SA ;
Courage, NL ;
Lu, XD ;
Cerasoli, F ;
Gilman, M ;
Holt, DA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (18) :10437-10442
[6]   Parallel dimers and anti-parallel tetramers formed by epidermal growth factor receptor pathway substrate clone 15 (EPS15) [J].
Cupers, P ;
ter Haar, E ;
Boll, W ;
Kirchhausen, T .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (52) :33430-33434
[7]   HISTOCHEMICAL STUDY OF ACID-PHOSPHATASE IN NORMAL AND VIRUS-TRANSFORMED CULTURED FIBROBLASTS [J].
DAWSON, AL ;
BEADLE, DJ ;
LIVINGSTON, DC ;
FISHER, SW .
HISTOCHEMICAL JOURNAL, 1975, 7 (01) :77-84
[8]  
Dunn William A. Jr., 1994, Trends in Cell Biology, V4, P139, DOI 10.1016/0962-8924(94)90069-8
[9]   Apg5p functions in the sequestration step in the cytoplasm-to-vacuole targeting and macroautophagy pathways [J].
George, MD ;
Baba, M ;
Scott, SV ;
Mizushima, N ;
Garrison, BS ;
Ohsumi, Y ;
Klionsky, DJ .
MOLECULAR BIOLOGY OF THE CELL, 2000, 11 (03) :969-982
[10]   Apg7p/Cvt2p is required for the cytoplasm-to-vacuole targeting, macroautophagy, and peroxisome degradation pathways [J].
Kim, J ;
Dalton, VM ;
Eggerton, KP ;
Scott, SV ;
Klionsky, DJ .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (05) :1337-1351