Dispersive estimates and the 2D cubic NLS equation

被引:24
作者
Planchon, F [1 ]
机构
[1] Univ Paris 06, URA 189, CNRS, Lab Anal Numerique, F-75252 Paris, France
来源
JOURNAL D ANALYSE MATHEMATIQUE | 2002年 / 86卷 / 1期
关键词
D O I
10.1007/BF02786654
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the initial value problem for the 2D cubic semi-linear Schrodinger equation is well-posed in the Besov space B(over dot)(2)(0,infinity)(R-2). For this, we rely on some new dispersive inequalities derived from bilinear restriction theorems.
引用
收藏
页码:319 / 334
页数:16
相关论文
共 20 条
[1]  
BERGH J, 1976, GRUNDLEHREN MAT WISS, V223
[2]  
Bourgain J, 1998, INT MATH RES NOTICES, V1998, P253
[3]   THE CAUCHY-PROBLEM FOR THE CRITICAL NONLINEAR SCHRODINGER-EQUATION IN HS [J].
CAZENAVE, T ;
WEISSLER, FB .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1990, 14 (10) :807-836
[4]   Asymptotically self-similar global solutions of the nonlinear Schrodinger and heat equations [J].
Cazenave, T ;
Weissler, FB .
MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (01) :83-120
[5]   Maximal functions associated to filtrations [J].
Christ, M ;
Kiselev, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 179 (02) :409-425
[6]   (LP0(A0), LP1(A1))0,Q [J].
CWIKEL, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (02) :286-292
[7]  
DAZENAVE T, 2000, COMMUN CONTEMP MATH, V3, P153
[8]  
GERARD P, 1998, C HONN L PEL ORS MAR
[9]  
KLAINERMAN S, 1996, INT MATH RES NOTICES, V5, P201, DOI DOI 10.1155/S1073792896000153.MR1383755
[10]  
Merle F, 1998, INT MATH RES NOTICES, V1998, P399