On a generalization of Bernstein polynomials and Bezier curves based on umbral calculus

被引:5
作者
Winkel, Rudolf [1 ]
机构
[1] Univ Appl Sci Bingen, D-55411 Bingen Rhine, Germany
关键词
Umbral calculus; Generalized Bernstein polynomial; Generalized de Casteljau algorithm; Interpolation; Efficient evaluation;
D O I
10.1016/j.cagd.2014.02.010
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Winkel (2001) a generalization of Bernstein polynomials and Bezier curves based on umbral calculus has been introduced. In the present paper we describe new geometric and algorithmic properties of this generalization including: (1) families of polynomials introduced by Stancu (1968) and Goldman (1985), i.e., families that include both Bernstein and Lagrange polynomial, are generalized in a new way, (2) a generalized de Casteljau algorithm is discussed, (3) an efficient evaluation of generalized Bezier curves through a linear transformation of the control polygon is described, (4) a simple criterion for endpoint tangentiality is established. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:227 / 244
页数:18
相关论文
共 32 条
[21]   Frobenius-Euler polynomials and umbral calculus in the p-adic case [J].
Kim, Dae San ;
Kim, Taekyun ;
Lee, Sang-Hun ;
Rim, Seog-Hoon .
ADVANCES IN DIFFERENCE EQUATIONS, 2012,
[22]   SOME IDENTITIES OF CATALAN-DAEHEE POLYNOMIALS ARISING FROM UMBRAL CALCULUS [J].
Kim, Taekyun ;
Kim, Dae San .
APPLIED AND COMPUTATIONAL MATHEMATICS, 2017, 16 (02) :177-189
[23]   Symmetric q-extension of λ-Apostol-Euler polynomials via umbral calculus [J].
Elmonser, Hedi .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (02) :583-594
[24]   A Novel Generalization of Bezier-like Curves and Surfaces with Shape Parameters [J].
Ameer, Moavia ;
Abbas, Muhammad ;
Abdeljawad, Thabet ;
Nazir, Tahir .
MATHEMATICS, 2022, 10 (03)
[25]   Optimum Velocity Profile of Multiple Bernstein-Bezier Curves Subject to Constraints for Mobile Robots [J].
Zdesar, Andrej ;
Skrjanc, Igor .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2018, 9 (05)
[26]   Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus [J].
Kim, Taekyun ;
Kim, Dae San .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
[27]   Some identities of extended degenerate r-central Bell polynomials arising from umbral calculus [J].
Taekyun Kim ;
Dae San Kim .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
[28]   (Discrete) Almansi type decompositions: an umbral calculus framework based on DSP (1|2) symmetries [J].
Faustino, N. ;
Ren, G. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (16) :1961-1979
[29]   An Algorithm to Realize the Real-time Interpolation of Bezier Curves Based on DSP [J].
Zhang, Yujie ;
Zhang, Weijie ;
Xu, Bin ;
Liu, Chang .
PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND INTELLIGENT COMMUNICATION, 2015, 16 :440-443
[30]   Bezier versus Lagrange polynomials-based finite element analysis of 2-D potential problems [J].
Provatidis, Christopher G. .
ADVANCES IN ENGINEERING SOFTWARE, 2014, 73 :22-34