Engineering design for the magnetic diagnostics of Wendelstein 7-X

被引:37
作者
Endler, M. [1 ]
Brucker, B. [1 ]
Bykov, V. [1 ]
Cardella, A. [1 ]
Cads, A. [1 ]
Dobmeier, F. [1 ]
Dudek, A. [1 ]
Fellinger, J. [1 ]
Geiger, J. [1 ]
Grosser, K. [1 ]
Grulke, O. [1 ]
Hartmann, D. [1 ]
Hathiramani, D. [1 ]
Hoechel, K. [1 ]
Koeppen, M. [1 ]
Laube, R. [1 ]
Neuner, U. [1 ]
Peng, X. [1 ]
Rahbarnia, K. [1 ]
Rummel, K. [1 ]
Sieber, T. [1 ]
Thiel, S. [1 ]
Vorkoeper, A. [1 ]
Werner, A. [1 ]
Windisch, T. [1 ]
Ye, M. Y. [1 ]
机构
[1] Max Planck Inst Plasma Phys, D-17491 Greifswald, Germany
关键词
Stellarator; Wendelstein; 7-X; Magnetic diagnostics; ANISOTROPIC PRESSURE; W7-X; PHYSICS; OPERATION; PLASMA;
D O I
10.1016/j.fusengdes.2015.07.020
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The magnetic diagnostics foreseen for the Wendelstein 7-X (W7-X) stellarator are diamagnetic loops to measure the plasma energy, Rogowski coils to measure the toroidal plasma current, saddle coils to measure the Pfirsch-Schluter currents, segmented Rogowski coils (poloidal magnetic field probes) to add information on the distribution of the plasma current density, and Mirnov coils to observe magnetohy-drodynamic modes. All these magnetic field sensors were designed as classical pick-up coils, after the time integration of induced signals for 1/2 hour had been successfully demonstrated. The long-pulse operation planned for W7-X causes nevertheless significant challenges to the design of these diagnostics, in particular for the components located inside the plasma vessel, which may be exposed to high levels of microwave (electron cyclotron resonance) stray radiation and thermal radiation. This article focuses on the tests and modelling performed during the development of the magnetic diagnostics and on the design solutions adopted to meet the conflicting requirements. All pick-up coils foreseen for the initial operation phase of W7-X and their signal cable sections inside the plasma vessel and the cryostat are now installed, and their electronics and data acquisition are under preparation. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:468 / 494
页数:27
相关论文
共 50 条
  • [21] The WENDELSTEIN 7-X mechanical structure support elements: Design and tests
    Gasparotto, M
    Elio, F
    Heinemann, B
    Jaksic, N
    Mendelevitch, B
    Simon-Weidner, J
    Streibl, B
    FUSION ENGINEERING AND DESIGN, 2005, 74 (1-4) : 161 - 165
  • [22] Design and technological solutions for the plasma facing components of WENDELSTEIN 7-X
    Boscary, J.
    Stadler, R.
    Peacock, A.
    Hurd, F.
    Vorkoeper, A.
    Mendelevitch, B.
    Cardella, A.
    Pirsch, H.
    Tittes, H.
    Tretter, J.
    Li, C.
    Greuner, H.
    Smirnow, M.
    FUSION ENGINEERING AND DESIGN, 2011, 86 (6-8) : 572 - 575
  • [23] Progress and Challenges in the Construction of Wendelstein 7-X
    Braeuer, Torsten
    Klinger, Thomas
    Bosch, Hans-Stephan
    2011 IEEE/NPSS 24TH SYMPOSIUM ON FUSION ENGINEERING (SOFE), 2011,
  • [24] On the accuracy of port assembly at Wendelstein 7-X
    Braeuer, Torsten
    FUSION ENGINEERING AND DESIGN, 2013, 88 (6-8) : 721 - 724
  • [25] Probe manipulators for Wendelstein 7-X and their interaction with the magnetic topology
    M RACK
    D H?SCHEN
    D REITER
    B UNTERBERG
    J W COENEN
    S BREZINSEK
    O NEUBAUER
    S BOZHENKOV
    G CZYMEK
    Y LIANG
    M HUBENY
    Ch LINSMEIER
    the Wendelstein 7-X Team
    Plasma Science and Technology, 2018, (05) : 10 - 21
  • [26] Retarding field analyzer for the wendelstein 7-X boundary plasma
    Henkel, M.
    Li, Y.
    Liang, Y.
    Drews, P.
    Knieps, A.
    Killer, C.
    Nicolai, D.
    Hoeschen, D.
    Geiger, J.
    Xiao, C.
    Sandri, N.
    Satheeswaran, G.
    Liu, S.
    Grulke, O.
    Jakubowski, M.
    Brezinsek, S.
    Otte, M.
    Neubauer, O.
    Schweer, B.
    Xu, G.
    Cai, J.
    FUSION ENGINEERING AND DESIGN, 2020, 157
  • [27] Demonstration of reduced neoclassical energy transport in Wendelstein 7-X
    Beidler, C. D.
    Smith, H. M.
    Alonso, A.
    Andreeva, T.
    Baldzuhn, J.
    Beurskens, M. N. A.
    Borchardt, M.
    Bozhenkov, S. A.
    Brunner, K. J.
    Damm, H.
    Drevlak, M.
    Ford, O. P.
    Fuchert, G.
    Geiger, J.
    Helander, P.
    Hergenhahn, U.
    Hirsch, M.
    Hoefel, U.
    Kazakov, Ye. O.
    Kleiber, R.
    Krychowiak, M.
    Kwak, S.
    Langenberg, A.
    Laqua, H. P.
    Neuner, U.
    Pablant, N. A.
    Pasch, E.
    Pavone, A.
    Pedersen, T. S.
    Rahbarnia, K.
    Schilling, J.
    Scott, E. R.
    Stange, T.
    Svensson, J.
    Thomsen, H.
    Turkin, Y.
    Warmer, F.
    Wolf, R. C.
    Zhang, D.
    NATURE, 2021, 596 (7871) : 221 - +
  • [28] Magnetic field accuracy and trim coils in Wendelstein 7-X
    Kisslinger, J.
    Andreeva, T.
    FUSION SCIENCE AND TECHNOLOGY, 2006, 50 (03) : 382 - 386
  • [29] Correction possibilities of magnetic field errors in WENDELSTEIN 7-X
    Kisslinger, J
    Andreeva, T
    FUSION ENGINEERING AND DESIGN, 2005, 74 (1-4) : 623 - 626
  • [30] Development of the 174 GHz collective Thomson scattering diagnostics at Wendelstein 7-X
    Ponomarenko, S.
    Moseev, D.
    Stange, T.
    Krier, L.
    Stordiau, P.
    Braune, H.
    Gantenbein, G.
    Jelonnek, J.
    Kuleshov, A.
    Laqua, H. P.
    Lechte, C.
    Marsen, S.
    Nielsen, S. K.
    Oosterbeek, J. W.
    Plaum, B.
    Ragona, R.
    Rasmussen, J.
    Ruess, T.
    Salewski, M.
    Thumm, M.
    Zimmermann, J.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2024, 95 (01)