A Statistical Prediction Model Based on Sparse Representations for Single Image Super-Resolution

被引:332
|
作者
Peleg, Tomer [1 ]
Elad, Michael [2 ]
机构
[1] Technion Israel Inst Technol, Dept Elect Engn, IL-32000 Haifa, Israel
[2] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
基金
欧洲研究理事会;
关键词
Dictionary learning; feedforward neural networks; MMSE estimation; nonlinear prediction; single image super-resolution; sparse representations; statistical models; restricted Boltzmann machine; zooming deblurring; DICTIONARY; INTERPOLATION; ALGORITHM;
D O I
10.1109/TIP.2014.2305844
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We address single image super-resolution using a statistical prediction model based on sparse representations of low-and high-resolution image patches. The suggested model allows us to avoid any invariance assumption, which is a common practice in sparsity-based approaches treating this task. Prediction of high resolution patches is obtained via MMSE estimation and the resulting scheme has the useful interpretation of a feedforward neural network. To further enhance performance, we suggest data clustering and cascading several levels of the basic algorithm. We suggest a training scheme for the resulting network and demonstrate the capabilities of our algorithm, showing its advantages over existing methods based on a low-and high-resolution dictionary pair, in terms of computational complexity, numerical criteria, and visual appearance. The suggested approach offers a desirable compromise between low computational complexity and reconstruction quality, when comparing it with state-of-the-art methods for single image super-resolution.
引用
收藏
页码:2569 / 2582
页数:14
相关论文
共 50 条
  • [21] Research on the single image super-resolution method based on sparse Bayesian estimation
    Yong-qiang Yang
    Cluster Computing, 2019, 22 : 1505 - 1513
  • [22] Single image super-resolution based on compressive sensing and improved TV minimization sparse recovery
    Vishnukumar, S.
    Wilscy, M.
    OPTICS COMMUNICATIONS, 2017, 404 : 80 - 93
  • [23] SINGLE IMAGE SUPER-RESOLUTION VIA SPARSE KPCA AND REGRESSION
    Yuan, Tingrong
    Yang, Wenming
    Zhou, Fei
    Liao, Qingmin
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2130 - 2134
  • [24] Sparse representation with morphologic regularizations for single image super-resolution
    Li, Weirong
    Li, Shutao
    SIGNAL PROCESSING, 2014, 98 : 410 - 422
  • [25] Single-image super-resolution based on sparse kernel ridge regression
    Wu, Fanlu
    Wang, Xiangjun
    AOPC 2017: OPTICAL SENSING AND IMAGING TECHNOLOGY AND APPLICATIONS, 2017, 10462
  • [26] Bidirectionally aligned sparse representation for single image super-resolution
    Chao Xie
    Weili Zeng
    Shengqin Jiang
    Xiaobo Lu
    Multimedia Tools and Applications, 2018, 77 : 7883 - 7907
  • [27] Bidirectionally aligned sparse representation for single image super-resolution
    Xie, Chao
    Zeng, Weili
    Jiang, Shengqin
    Lu, Xiaobo
    MULTIMEDIA TOOLS AND APPLICATIONS, 2018, 77 (07) : 7883 - 7907
  • [28] Sparse Representation Based Image Super-resolution Using Large Patches
    Liu Ning
    Zhou Pan
    Liu Wenju
    Ke Dengfeng
    CHINESE JOURNAL OF ELECTRONICS, 2018, 27 (04) : 813 - 820
  • [29] Greedy regression in sparse coding space for single-image super-resolution
    Tang, Yi
    Yuan, Yuan
    Yan, Pingkun
    Li, Xuelong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2013, 24 (02) : 148 - 159
  • [30] A super-resolution model and algorithm of remote sensing image based on sparse representation
    Zhong, J. (zhongjiusheng@sina.com), 1600, SinoMaps Press (43): : 276 - 283