Control Scheme of a Superconducting Synchronous Generator Applied to a Grid-connected Wind Power Generation System

被引:0
作者
Kim, G. H. [1 ]
Kim, K. M. [1 ]
Sung, H. J. [1 ]
Jung, S. J. [1 ]
Kim, S. [1 ]
Park, M. [1 ]
Yu, I. K. [1 ]
Lee, S. [2 ]
机构
[1] Changwon Natl Univ, 55306 Sarim Dong, Chang Won 641773, South Korea
[2] Uiduk Univ, Gyeongju 780713, South Korea
来源
2012 15TH INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2012) | 2012年
关键词
Back to back converter; PSCAD/EMTDC; Superconductivity; Wind power generation system; TURBINE-GENERATOR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Wind power generation system is a promising area of application of a superconducting synchronous generator (SCSG). A voltage sourced frequency converter connected to the stator winding of the SCSG and a DC-DC converter for the exciting current are needed for wind energy conversion. This paper describes the operation and control scheme of a superconducting wind power generation system (SCWPGS). The SCSG, voltage sourced frequency converter, and DC-DC converter are modeled and controllers of converters are designed in a power system computer aided design/electromagnetic transients including DC. This paper shows the dynamic performance of the SCWPGS with the proposed control system. The designed control system for the SCWPGS in this paper will possibly be applied to the actual system.
引用
收藏
页数:4
相关论文
共 15 条
[1]   Design Study of 10 kW Superconducting Generator for Wind Turbine Applications [J].
Abrahamsen, A. B. ;
Mijatovic, N. ;
Seiler, E. ;
Sorensen, M. P. ;
Koch, M. ;
Norgard, P. B. ;
Pedersen, N. F. ;
Traeholt, C. ;
Andersen, N. H. ;
Ostergard, J. .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2009, 19 (03) :1678-1682
[2]  
[Anonymous], [No title captured]
[3]  
Baroudi J. A., 2005, International Electric Machines and Drives Conference (IEEE Cat. No.05EX1023C), P458, DOI 10.1109/IEMDC.2005.195763
[4]   Control of permanent-magnet generators applied to variable-speed wind-energy systems connected to the grid [J].
Chinchilla, M ;
Arnaltes, S ;
Burgos, JC .
IEEE TRANSACTIONS ON ENERGY CONVERSION, 2006, 21 (01) :130-135
[5]   Frequency response capability of full converter wind turbine generators in comparison to conventional generation [J].
Conroy, James F. ;
Watson, Rick .
IEEE TRANSACTIONS ON POWER SYSTEMS, 2008, 23 (02) :649-656
[6]   Optimal Electric Network Design for a Large Offshore Wind Farm Based on a Modified Genetic Algorithm Approach [J].
Gonzalez-Longatt, Francisco M. ;
Wall, Peter ;
Regulski, Pawel ;
Terzija, Vladimir .
IEEE SYSTEMS JOURNAL, 2012, 6 (01) :164-172
[7]  
Heier S., 1998, Grid Integration of Wind Energy: Onshore and Offshore Conversion Systems, V1st ed.
[8]   EMTDC Based Simulation of 10 MW Class Grid-Connected Superconducting Wind Turbine Generator [J].
Kim, G-H ;
Kim, N. ;
Kim, K-M ;
Park, M. ;
Yu, I-K ;
Lee, S. ;
Park, T-J .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2012, 22 (03)
[9]   RTDS-based Real Time Simulations of Grid-Connected Wind Turbine Generator Systems [J].
Kim, Gyeong-Hun ;
Kim, Young-Ju ;
Park, Minwon ;
Yu, In-Keun ;
Song, Byeong-Mun .
2010 TWENTY-FIFTH ANNUAL IEEE APPLIED POWER ELECTRONICS CONFERENCE AND EXPOSITION (APEC), 2010, :2085-2090
[10]  
Kundur P., 1994, Power system stability and control, P45