Detection of Gait Abnormalities for Fall Risk Assessment Using Wrist-Worn Inertial Sensors and Deep Learning

被引:44
作者
Kiprijanovska, Ivana [1 ,2 ]
Gjoreski, Hristijan [3 ]
Gams, Matjaz [1 ,2 ]
机构
[1] Jozef Stefan Inst, Dept Intelligent Syst, Ljubljana 1000, Slovenia
[2] Jozef Stefan Int Postgrad Sch, Ljubljana 1000, Slovenia
[3] Ss Cyril & Methodius Univ, Fac Elect Engn & Informat Technol, Skopje 1000, North Macedonia
关键词
fall risk assessment; balance deficit; gait abnormalities; information fusion; smartwatch; inertial sensors; deep learning; OLDER-PEOPLE; CLASSIFICATION; ADULTS; IDENTIFICATION; ASSOCIATION;
D O I
10.3390/s20185373
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Falls are a significant threat to the health and independence of elderly people and represent an enormous burden on the healthcare system. Successfully predicting falls could be of great help, yet this requires a timely and accurate fall risk assessment. Gait abnormalities are one of the best predictive signs of underlying locomotion conditions and precursors of falls. The advent of wearable sensors and wrist-worn devices provides new opportunities for continuous and unobtrusive monitoring of gait during daily activities, including the identification of unexpected changes in gait. To this end, we present in this paper a novel method for determining gait abnormalities based on a wrist-worn device and a deep neural network. It integrates convolutional and bidirectional long short-term memory layers for successful learning of spatiotemporal features from multiple sensor signals. The proposed method was evaluated using data from 18 subjects, who recorded their normal gait and simulated abnormal gait while wearing impairment glasses. The data consist of inertial measurement unit (IMU) sensor signals obtained from smartwatches that the subjects wore on both wrists. Numerous experiments showed that the proposed method provides better results than the compared methods, achieving 88.9% accuracy, 90.6% sensitivity, and 86.2% specificity in the detection of abnormal walking patterns using data from an accelerometer, gyroscope, and rotation vector sensor. These results indicate that reliable fall risk assessment is possible based on the detection of walking abnormalities with the use of wearable sensors on a wrist.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 58 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Deep Learning to Predict Falls in Older Adults Based on Daily-Life Trunk Accelerometry [J].
Aicha, Ahmed Nait ;
Englebienne, Gwenn ;
van Schooten, Kimberley S. ;
Pijnappels, Mirjam ;
Krose, Ben .
SENSORS, 2018, 18 (05)
[3]   Risk factors for falls among older adults: A review of the literature [J].
Ambrose, Anne Felicia ;
Paul, Geet ;
Hausdorff, Jeffrey M. .
MATURITAS, 2013, 75 (01) :51-61
[4]  
[Anonymous], 08 15 BAC BLACK STRA
[5]  
[Anonymous], 2013, P 2013 RES AD CONV S
[6]   Window Size Impact in Human Activity Recognition [J].
Banos, Oresti ;
Galvez, Juan-Manuel ;
Damas, Miguel ;
Pomares, Hector ;
Rojas, Ignacio .
SENSORS, 2014, 14 (04) :6474-6499
[7]  
Bengio Y., 2011, P LECT NOTES COMPUTE
[8]  
Bengio Yoshua, 2009, FDN TRENDS MACH LEAR
[9]  
Berg R., 1992, 2 50 YEARS PROMOTING
[10]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32