186 K operation of terahertz quantum-cascade lasers based on a diagonal design

被引:278
|
作者
Kumar, Sushil [1 ]
Hu, Qing [1 ]
Reno, John L. [2 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Elect Res Lab, Cambridge, MA 02139 USA
[2] Sandia Natl Labs, Ctr Integrated Nanotechnol, Albuquerque, NM 87185 USA
基金
美国国家科学基金会;
关键词
heat sinks; laser beams; leakage currents; optical design techniques; oscillator strengths; quantum cascade lasers; submillimetre wave lasers; thermo-optical effects; CONTINUOUS-WAVE; EMISSION;
D O I
10.1063/1.3114418
中图分类号
O59 [应用物理学];
学科分类号
摘要
Resonant-phonon terahertz quantum-cascade lasers operating up to a heat-sink temperature of 186 K are demonstrated. This record temperature performance is achieved based on a diagonal design, with the objective to increase the upper-state lifetime and therefore the gain at elevated temperatures. The increased diagonality also lowers the operating current densities by limiting the flow of parasitic leakage current. Quantitatively, the diagonality is characterized by a radiative oscillator strength that is smaller by a factor of two from the least of any previously published designs. At the lasing frequency of 3.9 THz, 63 mW of peak optical power was measured at 5 K, and approximately 5 mW could still be detected at 180 K.
引用
收藏
页数:3
相关论文
共 50 条
  • [41] Recent advances of terahertz quantum cascade lasers
    Razeghi, M.
    TERAHERTZ EMITTERS, RECEIVERS, AND APPLICATIONS II, 2011, 8119
  • [42] The growth and measurement of terahertz quantum cascade lasers
    Khanna, Surai P.
    Chakraborty, Subhasish
    Lachab, Mohamed
    Hinchcliffe, Nicholas M.
    Linfield, Edmund H.
    Davies, A. Giles
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2008, 40 (06): : 1859 - 1861
  • [43] Physics and technology of Terahertz quantum cascade lasers
    Vitiello, Miriam S.
    Tredicucci, Alessandro
    ADVANCES IN PHYSICS-X, 2021, 6 (01):
  • [44] Photonic and electric control in terahertz quantum cascade lasers: Review
    Huang Jia-Hao
    Xu Gang-Yi
    JOURNAL OF INFRARED AND MILLIMETER WAVES, 2022, 41 (01) : 169 - 180
  • [45] Comparative analysis of thermal properties of various quantum-cascade lasers
    Olejniczak, Lukasz
    Sarzala, Robert P.
    Nakwaski, Wlodzimierz
    ICTON 2008: PROCEEDINGS OF 2008 10TH ANNIVERSARY INTERNATIONAL CONFERENCE ON TRANSPARENT OPTICAL NETWORKS, VOL 4, 2008, : 271 - 274
  • [46] Self-consistent scattering model of carrier dynamics in GaAs-AlGaAs terahertz quantum-cascade lasers
    Indjin, D
    Harrison, P
    Kelsall, RW
    Ikonic, Z
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2003, 15 (01) : 15 - 17
  • [47] Study of the Spectra of Arched-Cavity Quantum-Cascade Lasers
    A. V. Babichev
    D. A. Pashnev
    D. V. Denisov
    A. G. Gladyshev
    Yu. K. Bobretsova
    S. O. Slipchenko
    L. Ya. Karachinsky
    I. I. Novikov
    D. A. Firsov
    L. E. Vorobjev
    N. A. Pikhtin
    A. Yu. Egorov
    Optics and Spectroscopy, 2020, 128 : 702 - 706
  • [48] Coherent combining of quantum-cascade lasers with a binary phase grating
    Bloom, Guillaume
    Larat, Christian
    Lallier, Eric
    Lehoucq, Gaelle
    Bansropun, Shailendra
    Lee-Bouhours, Mane-Si Laure
    Loiseaux, Brigitte
    Carras, Mathieu
    Marcadet, Xavier
    Lucas-Leclin, Gaelle
    Georges, Patrick
    TECHNOLOGIES FOR OPTICAL COUNTERMEASURES VIII, 2011, 8187
  • [49] Spectrum Broadening in Multi-Resonance Quantum-Cascade Lasers
    Bai, Jing
    NONLINEAR OPTICS AND APPLICATIONS IV, 2010, 7728
  • [50] Spectral Characteristics of Half-Ring Quantum-Cascade Lasers
    A. V. Babichev
    D. A. Pashnev
    A. G. Gladyshev
    A. S. Kurochkin
    E. S. Kolodeznyi
    L. Ya. Karachinsky
    I. I. Novikov
    D. V. Denisov
    V. V. Dudelev
    G. S. Sokolovskii
    D. A. Firsov
    L. E. Vorob’ev
    S. O. Slipchenko
    A. V. Lutetskiy
    N. A. Pikhtin
    A. Yu. Egorov
    Optics and Spectroscopy, 2020, 128 : 1187 - 1192