Outer automorphism groups of finite p-nilpotent groups

被引:0
|
作者
Jin, P [1 ]
机构
[1] Shanxi Univ, Dept Math, Taiyuan 030006, Peoples R China
关键词
D O I
10.1081/AGB-120013324
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
When does a finite group possess a non-trivial outer automorphism? In this paper for a finite p-nilpotent group G we shall prove the following results. (a) If \O-p(G)\ > p, then p divides the order of Out(G). (b) If O-p(G) is non-abelian, then p divides the order of C-Out(G) (Z(G)). Our results extend a famous theorem of Gaschutz and can be applied to the investigation of finite complete groups.
引用
收藏
页码:4369 / 4375
页数:7
相关论文
共 50 条
  • [1] On finite p-nilpotent groups
    Adolfo Ballester-Bolinches
    Xiuyun Guo
    Yangming Li
    Ning Su
    Monatshefte für Mathematik, 2016, 181 : 63 - 70
  • [2] On finite p-nilpotent groups
    Ballester-Bolinches, Adolfo
    Guo, Xiuyun
    Li, Yangming
    Su, Ning
    MONATSHEFTE FUR MATHEMATIK, 2016, 181 (01): : 63 - 70
  • [3] A Criterion on the Finite p-Nilpotent Groups
    Xiangyang XU
    Yangming LI
    JournalofMathematicalResearchwithApplications, 2019, 39 (03) : 254 - 258
  • [4] Characterization of p-Nilpotent Groups by Monomials of Finite Groups
    Iiyori, Nobuo
    COMMUNICATIONS IN ALGEBRA, 2010, 38 (05) : 1695 - 1698
  • [5] A characteristic property of finite p-nilpotent groups
    Al-Sharo, KA
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (07) : 2655 - 2657
  • [6] p-Nilpotent Maximal Subgroups in Finite Groups
    Beltran, Antonio
    Shao, Changguo
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2025, 22 (01)
  • [7] COHOMOLOGICAL TRIVIALITY AND FINITE P-NILPOTENT GROUPS
    BABAKHANIAN, A
    ARCHIV DER MATHEMATIK, 1970, 21 (01) : 40 - +
  • [8] On p-nilpotent groups and metabelian groups
    Zhang, Linhua
    Fu, Shilu
    Chongqing Jianzhu Daxue Xuebao/Journal of Chongqing Jianzhu University, 2000, 22 (01): : 93 - 96
  • [9] ANOTHER HOMOLOGICAL CHARACTERIZATION OF FINITE P-NILPOTENT GROUPS
    STAMMBACH, U
    MATHEMATISCHE ZEITSCHRIFT, 1977, 156 (02) : 209 - 210
  • [10] FINITE GROUPS WITH p-NILPOTENT OR Φ-SIMPLE MAXIMAL SUBGROUPS
    Bazhanova, E. N.
    Vedernikov, V. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2022, 63 (01) : 19 - 33