Bifurcations of links of periodic orbits in non-singular Morse-Smale systems on S-3

被引:11
作者
Campos, B [1 ]
Alfaro, JM [1 ]
Vindel, P [1 ]
机构
[1] UNIV VALENCIA, DEPT MATEMAT, FAC MATEMAT, E-46003 VALENCIA, SPAIN
关键词
D O I
10.1088/0951-7715/10/5/018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The set of periodic orbits of a non-singular Morse-Smale (NMS) flow on S-3 defines a link; a characterization of all possible links of NMS flows on S-3 has been developed by Wada. In the frame of codimension-one bifurcations, this characterization allows us to study the restrictions a link requires for suffering a given bifurcation. We also derive the topological description of the new link and the possibility of relating links by a chain of this type of bifurcation.
引用
收藏
页码:1339 / 1355
页数:17
相关论文
共 16 条
[1]   ROUND HANDLES AND NON-SINGULAR MORSE-SMALE FLOWS [J].
ASIMOV, D .
ANNALS OF MATHEMATICS, 1975, 102 (01) :41-54
[2]  
Birman J., 1983, Contemp. Math., V20, P1, DOI DOI 10.1090/CONM/020/718132
[3]   KNOTTED PERIODIC-ORBITS IN DYNAMICAL-SYSTEMS .1. LORENZ EQUATIONS [J].
BIRMAN, JS ;
WILLIAMS, RF .
TOPOLOGY, 1983, 22 (01) :47-82
[4]  
CAMPOS B, 1996, NEW TRENDS HAMILTONI, P51
[5]   ENTROPY AND KNOTS [J].
FRANKS, J ;
WILLIAMS, RF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 291 (01) :241-253
[6]   PERIODIC STRUCTURE OF NON-SINGULAR MORSE-SMALE FLOWS [J].
FRANKS, J .
COMMENTARII MATHEMATICI HELVETICI, 1978, 53 (02) :279-294
[7]  
GHRIST R, 1993, NATO ADV SCI INST SE, V408, P185
[8]  
HOLMES P, 1988, LONDON MATH SOC LECT, V127, P150
[9]  
Newhouse S., 1976, ASTERISQUE, V31, P15
[10]  
Rolfsen D., 1976, KNOTS LINKS