Granger-causality maps of diffusion processes

被引:12
|
作者
Wahl, Benjamin [1 ,2 ]
Feudel, Ulrike [1 ]
Hlinka, Jaroslav [3 ,4 ]
Waechter, Matthias [2 ]
Peinke, Joachim [2 ]
Freund, Jan A. [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Chem & Biol Marine Environm, D-26129 Oldenburg, Germany
[2] Carl von Ossietzky Univ Oldenburg, Inst Phys, ForWind Ctr Wind Energy Res, D-26129 Oldenburg, Germany
[3] Czech Acad Sci Czech Republ, Inst Comp Sci, Prague 18207, Czech Republic
[4] Natl Inst Mental Hlth, Klecany, Czech Republic
关键词
NONLINEAR TIME-SERIES; INFORMATION-TRANSFER; LINEAR-DEPENDENCE; INFERENCE; FEEDBACK; TOOLBOX; FLOW;
D O I
10.1103/PhysRevE.93.022213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Supervised Estimation of Granger-Based Causality between Time Series
    Benozzo, Danilo
    Olivetti, Emanuele
    Avesani, Paolo
    FRONTIERS IN NEUROINFORMATICS, 2017, 11
  • [22] Granger causality in wall-bounded turbulence
    Tissot, Gilles
    Duran, Adrian Lozano
    Cordier, Laurent
    Jimenez, Javier
    Noack, Bernd R.
    1ST MULTIFLOW SUMMER WORKSHOP, 2014, 506
  • [23] Validity of Time Reversal for Testing Granger Causality
    Winkler, Irene
    Panknin, Danny
    Bartz, Daniel
    Mueller, Klaus-Robert
    Haufe, Stefan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2016, 64 (11) : 2746 - 2760
  • [24] Granger causality for state-space models
    Barnett, Lionel
    Seth, Anil K.
    PHYSICAL REVIEW E, 2015, 91 (04):
  • [25] Granger-Geweke causality: Estimation and interpretation
    Dhamala, Mukesh
    Liang, Hualou
    Bressler, Steven L.
    Ding, Mingzhou
    NEUROIMAGE, 2018, 175 : 460 - 463
  • [26] A GENERAL STATISTICAL FRAMEWORK FOR ASSESSING GRANGER CAUSALITY
    Kim, Sanggyun
    Brown, Emery N.
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2222 - 2225
  • [27] Wavelet Multiscale Granger Causality Analysis Based on State Space Models
    Zhang, Qiyi
    Zhang, Chuanlin
    Cheng, Shuangqin
    SYMMETRY-BASEL, 2023, 15 (06):
  • [28] Inferring species interactions using Granger causality and convergent cross mapping
    Barraquand, Frederic
    Picoche, Coralie
    Detto, Matteo
    Hartig, Florian
    THEORETICAL ECOLOGY, 2021, 14 (01) : 87 - 105
  • [29] Granger causality for compressively sensed sparse signals
    Kathpalia, Aditi
    Nagaraj, Nithin
    PHYSICAL REVIEW E, 2023, 107 (03)
  • [30] Causality analysis of neural connectivity: New tool and limitations of spectral Granger causality
    Hu, Sanqing
    Liang, Hualou
    NEUROCOMPUTING, 2012, 76 (01) : 44 - 47