A subspace cascadic multigrid method for mortar elements

被引:32
作者
Braess, D [1 ]
Deuflhard, P
Lipnikov, K
机构
[1] Ruhr Univ Bochum, Fac Math, D-44780 Bochum, Germany
[2] Konrad Zuse Zentrum Berlin, D-14195 Berlin, Germany
[3] Free Univ Berlin, D-14195 Berlin, Germany
[4] Univ Houston, Dept Math, Houston, TX 77204 USA
关键词
cascadic multigrid method; domain decomposition; mortar elements; non-matching grids; material jumps;
D O I
10.1007/s00607-002-1460-2
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A cascadic multigrid (CMG) method for elliptic problems with strong material jumps is proposed and analyzed. Non-matching grids at interfaces between subdomains are allowed and treated by mortar elements. The arising saddle point problems are solved by a subspace confined conjugate gradient method as smoother for the CMG. Details of algorithmic realization including adaptivity are elaborated. Numerical results illustrate the efficiency of the new subspace CMG algorithm.
引用
收藏
页码:205 / 225
页数:21
相关论文
共 30 条
[1]   SUBSTRUCTURING PRECONDITIONERS FOR THE Q(1) MORTAR ELEMENT METHOD [J].
ACHDOU, Y ;
KUZNETSOV, YA ;
PIRONNEAU, O .
NUMERISCHE MATHEMATIK, 1995, 71 (04) :419-449
[2]   HYBRID FINITE-ELEMENT DOMAIN DECOMPOSITION METHOD [J].
AGOUZAL, A ;
THOMAS, JM .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (06) :749-764
[3]  
Ben Belgacem F, 1999, NUMER MATH, V84, P173, DOI 10.1007/s002119900100
[4]  
Bernardi C., 1994, PITMAN RES NOTES MAT, VXI, P13
[5]  
BERNARDI C, 1995, R94029 U P M CUR, P1
[6]   The cascadic multigrid method for elliptic problems [J].
Bornemann, FA ;
Deuflhard, P .
NUMERISCHE MATHEMATIK, 1996, 75 (02) :135-152
[7]  
Bornemann FA, 1997, DOMAIN DECOMPOSITION METHODS IN SCIENCES AND ENGINEERING, P205
[8]  
BORNEMANN FA, 1998, DOMAIN DECOMPOSITION, P64
[9]   An efficient smoother for the Stokes problem [J].
Braess, D ;
Sarazin, R .
APPLIED NUMERICAL MATHEMATICS, 1997, 23 (01) :3-19
[10]   A cascadic multigrid algorithm for the Stokes equations [J].
Braess, D ;
Dahmen, W .
NUMERISCHE MATHEMATIK, 1999, 82 (02) :179-191