Compensation strategy to reduce geometry and mechanics mismatches in porous biomaterials built with Selective Laser Melting

被引:128
作者
Bagheri, Zahra S. [1 ]
Melancon, David [1 ]
Liu, Lu [1 ]
Johnston, R. Burnett [1 ]
Pasini, Damiano [1 ]
机构
[1] McGill Univ, Dept Mech Engn, Montreal, PQ H3G 1A4, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
Additive Manufacturing; Metallic porous biomaterials; Geometry mismatch; Mechanical properties; Compensation strategy; POLYCAPROLACTONE SCAFFOLDS; BONE; LATTICE; TITANIUM; DESIGN; MICROSTRUCTURE; HOMOGENIZATION; MANUFACTURE; MORPHOLOGY; BEHAVIOR;
D O I
10.1016/j.jmbbm.2016.04.041
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The accuracy of Additive Manufacturing processes in fabricating porous biomaterials is currently limited by their capacity to render pore morphology that precisely matches its design. In a porous biomaterial, a geometric mismatch can result in pore occlusion and strut thinning, drawbacks that can inherently compromise bone ingrowth and severely impact mechanical performance. This paper focuses on Selective Laser Melting of porous microarchitecture and proposes a compensation scheme that reduces the morphology mismatch between as-designed and as-manufactured geometry, in particular that of the pore. A spider web analog is introduced, built out of Ti-6Al-4V powder via SLM, and morphologically characterized. Results from error analysis of strut thickness are used to generate thickness compensation relations expressed as a function of the angle each strut formed with the build plane. The scheme is applied to fabricate a set of three-dimensional porous biomaterials, which are morphologically and mechanically characterized via micro Computed Tomography, mechanically tested and numerically analyzed. For strut thickness, the results show the largest mismatch (60% from the design) occurring for horizontal members, reduces to 3.1% upon application of the compensation. Similar improvement is observed also for the mechanical properties, a factor that further corroborates the merit of the design-oriented scheme here introduced. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:17 / 27
页数:11
相关论文
共 45 条
[1]  
[Anonymous], RT EJOURNAL FORUM RA
[2]   High-strength porous biomaterials for bone replacement: A strategy to assess the interplay between cell morphology, mechanical properties, bone ingrowth and manufacturing constraints [J].
Arabnejad, Sajad ;
Johnston, R. Burnett ;
Pura, Jenny Ann ;
Singh, Baljinder ;
Tanzer, Michael ;
Pasini, Damiano .
ACTA BIOMATERIALIA, 2016, 30 :345-356
[3]   Mechanical properties of lattice materials via asymptotic homogenization and comparison with alternative homogenization methods [J].
Arabnejad, Sajad ;
Pasini, Damiano .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2013, 77 :249-262
[4]   Designing hybrid materials [J].
Ashby, MF ;
Bréchet, YJM .
ACTA MATERIALIA, 2003, 51 (19) :5801-5821
[5]   Manufacture, characterisation and application of cellular metals and metal foams [J].
Banhart, J .
PROGRESS IN MATERIALS SCIENCE, 2001, 46 (06) :559-U3
[6]   Optimization of scaffold design for bone tissue engineering: A computational and experimental study [J].
Dias, Marta R. ;
Guedes, Jose M. ;
Flanagan, Colleen L. ;
Hollister, Scott J. ;
Fernandes, Paulo R. .
MEDICAL ENGINEERING & PHYSICS, 2014, 36 (04) :448-457
[7]   Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering [J].
Eshraghi, Shaun ;
Das, Suman .
ACTA BIOMATERIALIA, 2010, 6 (07) :2467-2476
[8]   Micro-architectured materials: past, present and future [J].
Fleck, N. A. ;
Deshpande, V. S. ;
Ashby, M. F. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2121) :2495-2516
[9]  
Guillemin E. A., 1963, THEORY LINEAR PHYS S
[10]   Cellular Ti-6Al-4V structures with interconnected macro porosity for bone implants fabricated by selective electron beam melting [J].
Heinl, Peter ;
Mueller, Lenka ;
Koerner, Carolin ;
Singer, Robert F. ;
Mueller, Frank A. .
ACTA BIOMATERIALIA, 2008, 4 (05) :1536-1544