Neurons that regulate mouse torpor

被引:156
作者
Hrvatin, Sinisa [1 ]
Sun, Senmiao [2 ]
Wilcox, Oren F. [1 ]
Yao, Hanqi [1 ]
Lavin-Peter, Aurora J. [1 ]
Cicconet, Marcelo [3 ]
Assad, Elena G. [1 ]
Palmer, Michaela E. [1 ]
Aronson, Sage [4 ]
Banks, Alexander S. [5 ]
Griffith, Eric C. [1 ]
Greenberg, Michael E. [1 ]
机构
[1] Harvard Med Sch, Dept Neurobiol, Boston, MA 02115 USA
[2] Harvard Med Sch, Program Neurosci, Boston, MA 02115 USA
[3] Harvard Med Sch, Image & Data Anal Core, Boston, MA 02115 USA
[4] Neurophotometrics Ltd, San Diego, CA USA
[5] Beth Israel Deaconess Med Ctr, Div Endocrinol Diabet & Metab, Boston, MA 02215 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/s41586-020-2387-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The advent of endothermy, which is achieved through the continuous homeostatic regulation of body temperature and metabolism(1,2), is a defining feature of mammalian and avian evolution. However, when challenged by food deprivation or harsh environmental conditions, many mammalian species initiate adaptive energy-conserving survival strategies-including torpor and hibernation-during which their body temperature decreases far below its homeostatic set-point(3-5). How homeothermic mammals initiate and regulate these hypothermic states remains largely unknown. Here we show that entry into mouse torpor, a fasting-induced state with a greatly decreased metabolic rate and a body temperature as low as 20 degrees C-6, is regulated by neurons in the medial and lateral preoptic area of the hypothalamus. We show that restimulation of neurons that were activated during a previous bout of torpor is sufficient to initiate the key features of torpor, even in mice that are not calorically restricted. Among these neurons we identify a population of glutamatergic Adcyap1-positive cells, the activity of which accurately determines when mice naturally initiate and exit torpor, and the inhibition of which disrupts the natural process of torpor entry, maintenance and arousal. Taken together, our results reveal a specific neuronal population in the mouse hypothalamus that serves as a core regulator of torpor. This work forms a basis for the future exploration of mechanisms and circuitry that regulate extreme hypothermic and hypometabolic states, and enables genetic access to monitor, initiate, manipulate and study these ancient adaptations of homeotherm biology.
引用
收藏
页码:115 / +
页数:32
相关论文
共 67 条
[21]   CNS CONTROL OF BODY-TEMPERATURE DURING HIBERNATION [J].
HELLER, HC ;
HAMMEL, HT .
COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY, 1972, 41 (2A) :349-&
[22]   The heat regulation of small laboratory animals at various environmental temperatures [J].
Herrington, LP .
AMERICAN JOURNAL OF PHYSIOLOGY, 1940, 129 (01) :0123-0139
[23]   FOOD RESTRICTION INCREASES TORPOR AND IMPROVES BROWN ADIPOSE-TISSUE THERMOGENESIS IN OB/OB MICE [J].
HIMMSHAGEN, J .
AMERICAN JOURNAL OF PHYSIOLOGY, 1985, 248 (05) :E531-E539
[24]   Neural control of fasting-induced torpor in mice [J].
Hitrec, Timna ;
Luppi, Marco ;
Bastianini, Stefano ;
Squarcio, Fabio ;
Berteotti, Chiara ;
Lo Martire, Viviana ;
Martelli, Davide ;
Occhinegro, Alessandra ;
Tupone, Domenico ;
Zoccoli, Giovanna ;
Amici, Roberto ;
Cerri, Matteo .
SCIENTIFIC REPORTS, 2019, 9 (1)
[25]   TRPs et al.: a molecular toolkit for thermosensory adaptations [J].
Hoffstaetter, Lydia J. ;
Bagriantsev, Sviatoslav N. ;
Gracheva, Elena O. .
PFLUGERS ARCHIV-EUROPEAN JOURNAL OF PHYSIOLOGY, 2018, 470 (05) :745-759
[26]   A scalable platform for the development of cell-type-specific viral drivers [J].
Hrvatin, Sinisa ;
Tzeng, Christopher P. ;
Nagy, M. Aurel ;
Stroud, Hume ;
Koutsioumpa, Charalampia ;
Wilcox, Oren F. ;
Assad, Elena G. ;
Green, Jonathan ;
Harvey, Christopher D. ;
Griffith, Eric C. ;
Greenberg, Michael E. .
ELIFE, 2019, 8
[27]   Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex [J].
Hrvatin, Sinisa ;
Hochbaum, Daniel R. ;
Nagy, M. Aurel ;
Cicconet, Marcelo ;
Robertson, Keiramarie ;
Cheadle, Lucas ;
Zilionis, Rapolas ;
Ratner, Alex ;
Borges-Monroy, Rebeca ;
Klein, Allon M. ;
Sabatini, Bernardo L. ;
Greenberg, Michael E. .
NATURE NEUROSCIENCE, 2018, 21 (01) :120-+
[28]   Classification of low quality cells from single-cell RNA-seq data [J].
Ilicic, Tomislav ;
Kim, Jong Kyoung ;
Kolodziejczyk, Aleksandra A. ;
Bagger, Frederik Otzen ;
McCarthy, Davis James ;
Marioni, John C. ;
Teichmann, Sarah A. .
GENOME BIOLOGY, 2016, 17
[29]   Fasting of mice: a review [J].
Jensen, T. L. ;
Kiersgaard, M. K. ;
Sorensen, D. B. ;
Mikkelsen, L. F. .
LABORATORY ANIMALS, 2013, 47 (04) :225-240
[30]   Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells [J].
Klein, Allon M. ;
Mazutis, Linas ;
Akartuna, Ilke ;
Tallapragada, Naren ;
Veres, Adrian ;
Li, Victor ;
Peshkin, Leonid ;
Weitz, David A. ;
Kirschner, Marc W. .
CELL, 2015, 161 (05) :1187-1201