Infinitely many sign-changing solutions for a class of biharmonic equation without symmetry

被引:31
作者
Wang, Youjun [1 ]
Shen, Yaotian [1 ]
机构
[1] S China Univ Technol, Sch Math Sci, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Sign-changing solutions; (PS) condition; Intersection theorem; ELLIPTIC-EQUATIONS;
D O I
10.1016/j.na.2008.11.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, via a perturbation theory, we prove the existence of infinitely many sign-changing solutions for a class of biharmonic equations. Crown Copyright (C) 2008 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:967 / 977
页数:11
相关论文
共 11 条
[1]   A PERTURBATION METHOD IN CRITICAL-POINT THEORY AND APPLICATIONS [J].
BAHRI, A ;
BERESTYCKI, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 267 (01) :1-32
[2]   CRITICAL EXPONENTS, CRITICAL DIMENSIONS AND THE BIHARMONIC OPERATOR [J].
EDMUNDS, DE ;
FORTUNATO, D ;
JANNELLI, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (03) :269-289
[3]   ON THE SCHRODINGER-EQUATION AND THE EIGENVALUE PROBLEM [J].
LI, P ;
YAU, ST .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (03) :309-318
[4]  
RABINOWITZ P, 1986, C BOARD MATH SCI REG, V65
[5]   MULTIPLE CRITICAL-POINTS OF PERTURBED SYMMETRIC FUNCTIONALS [J].
RABINOWITZ, PH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 272 (02) :753-769
[6]   Infinitely many solutions to perturbed elliptic equations [J].
Schechter, M ;
Zou, W .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 228 (01) :1-38
[7]  
SCHTER M, T AM MATH SCO, V358, P5293
[8]  
SHEN YT, 1980, J CHINA U SCI TECH, V10, P15
[9]   Infinitely many solutions for indefinite semilinear elliptic equations without symmetry [J].
Tehrani, HT .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1996, 21 (3-4) :541-557
[10]  
ZEN XZ, 2000, ACTA MATH SCI, V20, P547