Flexible/Bendable Acoustofluidics Based on Thin-Film Surface Acoustic Waves on Thin Aluminum Sheets

被引:39
作者
Wang, Yong [1 ,2 ,3 ]
Zhang, Qian [1 ,2 ]
Tao, Ran [2 ,4 ]
Xie, Jin [1 ]
Canyelles-Pericas, Pep [5 ]
Torun, Hamdi [2 ]
Reboud, Julien [6 ]
McHale, Glen [7 ]
Dodd, Linzi E. [2 ]
Yang, Xin [8 ]
Luo, Jingting [4 ]
Wu, Qiang [2 ]
Fu, YongQing [2 ]
机构
[1] Zhejiang Univ, State Key Lab Fluid Power & Mechatron Syst, Hangzhou 310027, Peoples R China
[2] Univ Northumbria, Fac Engn & Environm, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[3] Westlake Univ, Sch Engn, Key Lab 3D Micro Nano Fabricat & Characterizat Zh, Hangzhou 310024, Peoples R China
[4] Shenzhen Univ, Coll Phys & Optoelect Engn, Shenzhen Key Lab Adv Thin Films & Applicat, Shenzhen 518060, Peoples R China
[5] Univ Twente, MESA Inst, Dept Integrated Devices & Syst, NL-7522 NH Enschede, Netherlands
[6] Univ Glasgow, James Watt Sch Engn, Div Biomed Engn, Glasgow G12 8LT, Lanark, Scotland
[7] Univ Edinburgh, Sch Engn, Inst Multiscale Thermofluids, Edinburgh EH9 3FB, Midlothian, Scotland
[8] Cardiff Univ, Sch Engn, Dept Elect & Elect Engn, Cardiff CF24 3AA, Wales
基金
中国国家自然科学基金; 英国工程与自然科学研究理事会;
关键词
acoustofluidics; flexible devices; ZnO thin films; surface acoustic waves; aluminum sheets; DEVICES; MICROFLUIDICS;
D O I
10.1021/acsami.0c22576
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, we explore the acoustofluidic performance of zinc oxide (ZnO) thin-film surface acoustic wave (SAW) devices fabricated on flexible and bendable thin aluminum (Al) foils/sheets with thicknesses from 50 to 1500 mu m. Directional transport of fluids along these flexible/bendable surfaces offers potential applications for the next generation of microfluidic systems, wearable biosensors and soft robotic control. Theoretical calculations indicate that bending under strain levels up to 3000 mu epsilon causes a small frequency shift and amplitude change (<0.3%) without degrading the acoustofluidic performance. Through systematic investigation of the effects of the Al sheet thickness on the microfluidic actuation performance for the bent devices, we identify the optimum thickness range to both maintain efficient microfluidic actuation and enable significant deformation of the substrate, providing a guide to design such devices. Finally, we demonstrate efficient liquid transportation across a wide range of substrate geometries including inclined, curved, vertical, inverted, and lateral positioned surfaces using a 200 mu m thick Al sheet SAW device.
引用
收藏
页码:16978 / 16986
页数:9
相关论文
共 50 条
[41]   Advances in Hybrid Icing and Frosting Protection Strategies for Optics, Lens, and Photonics in Cold Environments Using Thin-Film Acoustic Waves [J].
Ong, Hui Ling ;
Ji, Zhangbin ;
Haworth, Luke ;
Guo, Yihao ;
del Moral, Jaime ;
Jacob, Stefan ;
Borras, Ana ;
Gonzalez-Elipe, Agustin R. ;
Zhang, Jikai ;
Zhou, Jian ;
Mchale, Glen ;
Fu, Yong-Qing .
ADVANCED ENGINEERING MATERIALS, 2025,
[42]   Theoretical and Experimental Investigation on the Use of a Surface Acoustic Wave Sensor for SU-8 Thin-Film Adhesion Characterization [J].
El Gowini, Mohamed M. ;
Moussa, Walied A. .
IEEE SENSORS JOURNAL, 2015, 15 (08) :4667-4676
[43]   Hybrid flexible ambipolar thin-film transistors based on pentacene and ZnO capable of low-voltage operation [J].
Yang, Chanwoo ;
Yoo, Eun Joo ;
Lee, Seung Woo ;
An, Tae Kyu ;
Kim, Se Hyun .
CHINESE JOURNAL OF PHYSICS, 2016, 54 (04) :471-474
[44]   Low temperature fabrication of a ZnO nanoparticle thin-film transistor suitable for flexible electronics [J].
Vidor, F. F. ;
Wirth, G. I. ;
Hilleringmann, U. .
MICROELECTRONICS RELIABILITY, 2014, 54 (12) :2760-2765
[45]   Integrated Sensing and Acoustofluidic Functions for Flexible Thin Film Acoustic Wave Devices Based on Metallic and Polymer Multilayers [J].
Zahertar, Shahrzad ;
Tao, Ran ;
Wang, Hongzhe ;
Torun, Hamdi ;
Canyelles-Pericas, Pep ;
Liu, Yang ;
Vernon, Jethro ;
Ng, Wai Pang ;
Binns, Richard ;
Wu, Qiang ;
Luo, Jingting ;
Fu, Yong-Qing .
IEEE SENSORS JOURNAL, 2023, 23 (20) :24041-24049
[46]   Flexible ZnO thin film acoustic wave device for gas flow rate measurement [J].
Zhang, Qian ;
Wang, Yong ;
Tao, Ran ;
Torun, Hamdi ;
Xie, Jin ;
Li, Yifan ;
Fu, Chen ;
Luo, Jingting ;
Wu, Qiang ;
Ng, Wai Pang ;
Binns, Richard ;
Fu, Yong Qing .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2020, 30 (09)
[47]   Efficiency of Generation of Surface Acoustic Waves in Barium Strontium Titanate Thin Films [J].
Shirokov, Vladimir B. ;
Timoshenko, Pavel E. ;
Kalinchuk, Valery V. .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2022, 69 (05) :1815-1820
[48]   Microfluidic pumps employing surface acoustic waves generated in ZnO thin films [J].
Du, X. Y. ;
Fu, Y. Q. ;
Luo, J. K. ;
Flewitt, A. J. ;
Milne, W. I. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (02)
[49]   Surface acoustic wave resonators on thin film piezoelectric substrates in the quantum regime [J].
Luschmann, Thomas ;
Jung, Alexander ;
Gepraegs, Stephan ;
Haslbeck, Franz X. ;
Marx, Achim ;
Filipp, Stefan ;
Groblacher, Simon ;
Gross, Rudolf ;
Huebl, Hans .
MATERIALS FOR QUANTUM TECHNOLOGY, 2023, 3 (02)
[50]   Integration of thin film giant magnetoimpedance sensor and surface acoustic wave transponder [J].
Li, Bodong ;
Salem, Nedime Pelin M. H. ;
Giouroudi, Ioanna ;
Kosel, Juergen .
JOURNAL OF APPLIED PHYSICS, 2012, 111 (07)