Autoregressive Modeling Based Empirical Mode Decomposition (EMD) for Epileptic Seizures Detection Using EEG Signals

被引:16
作者
Rafik, Djemili [1 ]
Larbi, Boubchir [2 ]
机构
[1] Univ 20 Aout, LRES Lab, Skikda 1955, Algeria
[2] Univ Paris 08, LIASD Lab, Paris, France
关键词
epilepsy; epileptic EEG signals; EMD; autoregressive modeling; classification; seizures; ARTIFICIAL NEURAL-NETWORKS; WAVELET TRANSFORM; CLASSIFICATION;
D O I
10.18280/ts.360311
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Epilepsy is a neurological disorder affecting several millions of humans on earth. Epileptic seizures provoked in major cases by sudden electrical discharges of tremendous brain cells could not be predicted. Hence, automatic seizures detection and classification based on the analysis of electroencephalographic (EEG) signals becomes essential. The purpose of this paper is to propose a new feature extraction method using empirical mode decomposition (EMD) and a multilayer perceptron neural network (MLPNN). The EMD algorithm decomposes a time segment EEG into intrinsic mode functions (IMFs) on which autoregressive (AR) parameters are extracted, combined and fed to the MLPNN classifier. Experimental results carried out on a publicly available dataset, comprising normal, interictal and ictal EEG signals achieved classification accuracy up to 98 %. The outcome of this research is mainly intended to aid practioners in the diagnosis of epileptic portions in the EEG recordings.
引用
收藏
页码:273 / 279
页数:7
相关论文
共 42 条
[1]   Iris tissue recognition based on GLDM feature extraction and hybrid MLPNN-ICA classifier [J].
Ahmadi, Neda ;
Akbarizadeh, Gholamreza .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (07) :2267-2281
[2]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[3]  
Alam S. M. S., 2011, INT J COMPUTER ELECT, V4, P231, DOI [10.7763/IJCEE.2012, DOI 10.7763/IJCEE.2012]
[4]   Detection of Seizure and Epilepsy Using Higher Order Statistics in the EMD Domain [J].
Alam, S. M. Shafiul ;
Bhuiyan, M. I. H. .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2013, 17 (02) :312-318
[5]   Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state [J].
Andrzejak, RG ;
Lehnertz, K ;
Mormann, F ;
Rieke, C ;
David, P ;
Elger, CE .
PHYSICAL REVIEW E, 2001, 64 (06) :8-061907
[6]  
[Anonymous], 1996, PATTERN RECOGN, DOI [DOI 10.1017/CBO9780511812651, 10.1017/CBO9780511812651]
[7]  
Bajaj V, 2013, BIOMED ENG LETT, V3, P17
[8]  
Bishop C.M., 1995, Neural networks for pattern recognition
[9]  
BURG JP, 1978, NEW ANAL TECHNIQUE T, P42
[10]   Seizure lateralization in scalp EEG using Hjorth parameters [J].
Cecchin, T. ;
Ranta, R. ;
Koessler, L. ;
Caspary, O. ;
Vespignani, H. ;
Maillard, L. .
CLINICAL NEUROPHYSIOLOGY, 2010, 121 (03) :290-300