Fabrication of nanoscale to microscale 2.5D square patterns on metallic films by the coupling AFM lithography

被引:8
作者
Yang, Ye [1 ]
Zhao, Wansheng [2 ]
机构
[1] Shanghai Normal Univ, Coll Informat Mech & Elect Engn, Shanghai 200234, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Mech Engn, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
AFM nanolithography; Nanofabrication; Nanoscale electric discharge; Nanoscale scratching; Nanoindentation; DIP-PEN NANOLITHOGRAPHY; ATOMIC-FORCE MICROSCOPE; PROBE; NANOSTRUCTURES; DEPOSITION;
D O I
10.1016/j.jmapro.2019.08.032
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The coupling AFM lithography is innovatively developed to fabricate the controllable 2.5D area structures on the conductive sample surface with the nanoscale resolution, which has wide applications in the fabrication of various nanodevices. The AFM probe functions as both the cutting tool and the electrode tool during the coupling AFM lithography processes. Compared to the conventional mechanical AFM lithography or electric AFM lithography, which merely applies force load or bias voltage, the coupling AFM lithography owns the superior advantages of higher material removal rate, lower surface roughness and lower threshold bias voltage. The nanoscale to microscale 2.5D square patterns in the depths of 6-80 nm could be generated on the metallic thin film samples, such as copper and platinum under the coupling effects of mechanical force and electric field. The machining depth and surface roughness is tunable by the distinctive machining parameter settings. The underlying machining mechanisms are attributed to the coupling influences of the electric field induced electric discharge and possible annealing behavior, along with the mechanical force induced surface indentation and scratching.
引用
收藏
页码:129 / 138
页数:10
相关论文
共 43 条
[1]   Fabrication of 10-nm-scale nanoconstrictions in graphene using atomic force microscopy-based local anodic oxidation lithography [J].
Arai, Miho ;
Masubuchi, Satoru ;
Nose, Kenji ;
Mitsuda, Yoshitaka ;
Machida, Tomoki .
JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (04)
[2]   Bias-assisted atomic force microscope nanolithography on NbS2 thin films grown by chemical vapor deposition [J].
Bark, Hunyoung ;
Kwon, Sanghyuk ;
Lee, Changgu .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2016, 49 (48)
[3]   Scanning thermal lithography: Maskless, submicron thermochemical patterning of photoresist by ultracompliant probes [J].
Basu, AS ;
McNamara, S ;
Gianchandani, YB .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2004, 22 (06) :3217-3220
[4]   Functional bisimide dyes bound via electrostatic interactions to oxide nanostructures generated by AFM lithography [J].
Baumgaertel, T. ;
Rehm, S. ;
Wuerthner, F. ;
von Borczyskowski, C. ;
Graaf, H. .
APPLIED SURFACE SCIENCE, 2014, 318 :51-58
[5]   Scalable Fabrication of Multiplexed Plasmonic Nanoparticle Structures Based on AFM Lithography [J].
Chen, Jianmei ;
Sun, Yinghui ;
Zhong, Liubiao ;
Shao, Weijing ;
Huang, Jing ;
Liang, Feng ;
Cui, Zequn ;
Liang, Zhiqiang ;
Jiang, Lin ;
Chi, Lifeng .
SMALL, 2016, 12 (42) :5818-5825
[6]   Large-Area Patterning of Metal Nanostructures by Dip-Pen Nanodisplacement Lithography for Optical Applications [J].
Chen, Lina ;
Wei, Xiaoling ;
Zhou, Xuechang ;
Xie, Zhuang ;
Li, Kan ;
Ruan, Qifeng ;
Chen, Chaojian ;
Wang, Jianfang ;
Mirkin, Chad A. ;
Zheng, Zijian .
SMALL, 2017, 13 (43)
[7]   Sub-10 Nanometer Feature Size in Silicon Using Thermal Scanning Probe Lithography [J].
Cho, Yu Kyoung Ryu ;
Rawlings, Colin D. ;
Wolf, Heiko ;
Spieser, Martin ;
Bisig, Samuel ;
Reidt, Steffen ;
Sousa, Marilyne ;
Khanal, Subarna R. ;
Jacobs, Tevis D. B. ;
Knoll, Armin W. .
ACS NANO, 2017, 11 (12) :11890-11897
[8]   The Role of Liquid Ink Transport in the Direct Placement of Quantum Dot Emitters onto Sub-Micrometer Antennas by Dip-Pen Nanolithography [J].
Dawood, Farah ;
Wang, Jun ;
Schulze, Peter A. ;
Sheehan, Chris J. ;
Buck, Matthew R. ;
Dennis, Allison M. ;
Majumder, Somak ;
Krishnamurthy, Sachi ;
Ticknor, Matthew ;
Staude, Isabelle ;
Brener, Igal ;
Goodwin, Peter M. ;
Amro, Nabil A. ;
Hollingsworth, Jennifer A. .
SMALL, 2018, 14 (31)
[9]   AFM-based 3D Nanofabrication using Ultrasonic Vibration Assisted Nanomachining [J].
Deng, Jia ;
Zhang, Li ;
Dong, Jingyan ;
Cohen, Paul H. .
43RD NORTH AMERICAN MANUFACTURING RESEARCH CONFERENCE, NAMRC 43, 2015, 1 :584-592
[10]   Thermal scanning probe lithography for the directed self-assembly of block copolymers [J].
Gottlieb, S. ;
Lorenzoni, M. ;
Evangelio, L. ;
Fernandez-Regulez, M. ;
Ryu, Y. K. ;
Rawlings, C. ;
Spieser, M. ;
Knoll, A. W. ;
Perez-Murano, F. .
NANOTECHNOLOGY, 2017, 28 (17)