Tunable potentials and decoherence effect on polaron in nanostructures

被引:23
作者
Fotue, A. J. [1 ]
Fobasso, M. F. C. [1 ]
Kenfack, S. C. [1 ,2 ]
Tiotsop, M. [1 ]
Djomou, J. -R. D. [1 ]
Ekosso, C. M. [1 ]
Nguimeya, G. -P. [1 ]
Danga, J. E. [1 ]
Tsiaze, R. M. Keumo [1 ,2 ,3 ]
Fai, L. C. [1 ]
机构
[1] Univ Dschang, Dept Phys, Mesoscop & Multilayer Struct Lab, Fac Sci, POB 479, Dschang, Cameroon
[2] Univ Abomey Calavi, Int Chair Math Phys & Applicat ICMPA UNESCO Chair, 072 BP 50, Cotonou, Benin
[3] Univ Yaounde I, Dept Phys, Lab Mech Mat & Struct, Fac Sci, POB 812, Yaounde, Cameroon
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2016年 / 131卷 / 06期
关键词
QUANTUM-DOT QUBIT; ROD QUBIT; CONFINEMENT; FIELD;
D O I
10.1140/epjp/i2016-16205-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We studied the effect of the tunable potential and decoherence of polaron in nanostructures. We have arbitrarily chosen eight potentials: the elliptical potential, square potential, triangular potential, the quadratic potential, the delta potential, the Gaussian potential, the pseudo-harmonic potential and Coulombic potential. In order to evaluate different polaronic parameters, we used the unitary transformation of LLP and the Pekar-type variational method (PTVM). This system can be considered as a two-level quantum system. We demonstrate in this work that the elliptical potential best confines the polaron and provides interesting information transfer, whereas, Gaussian, pseudo-harmonic and Coulombic potentials transfer information slowly. It is also found in this work that the Coulomb potential seems to be the most chaotic compared to the seven other used. This work confirms that the choice of a potential is crucial for the study of decoherence in nanostructures.
引用
收藏
页数:15
相关论文
共 36 条
  • [21] The Effect of Magnetic on the Properties of a Parabolic Quantum Dot Qubit
    Li, Wei-Ping
    Yin, Ji-Wen
    Yu, Yi-Fu
    Wang, Zi-Wu
    Xiao, Jing-Lin
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2010, 160 (3-4) : 112 - 118
  • [22] Quantum Transition of Two-Level System in a Parabolic Quantum Dot
    Li, Wei-Ping
    Yin, Ji-Wen
    Yu, Yi-Fu
    Xiao, Jing-Lin
    Wang, Zi-Wu
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (12) : 3339 - 3344
  • [23] Quantum Transition of an Electron in an Asymmetric Quantum Dot
    Li, Zhi-Xin
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2015, 181 (1-2) : 30 - 37
  • [24] Electrostatic quantum dots with designed shape of confinement potential
    Lis, K
    Bednarek, S
    Szafran, B
    Adamowski, J
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2003, 17 (1-4) : 494 - 497
  • [25] Decoherence in large quantum registers under variable interaction with the environment
    Lovric, Marko
    Krojanski, Hans Georg
    Suter, Dieter
    [J]. PHYSICAL REVIEW A, 2007, 75 (04):
  • [26] Coulomb Impurity Potential RbCl Quantum Pseudodot Qubit
    Ma, Xin-Jun
    Qi, Bin
    Xiao, Jing-Lin
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2015, 180 (3-4) : 315 - 320
  • [27] DECOHERENCE OF THE TRIANGULAR BOUND POTENTIAL QUANTUM DOT QUBIT
    Sun, Jia-Kui
    Li, Hong-Juan
    Xiao, Jing-Lin
    [J]. MODERN PHYSICS LETTERS B, 2009, 23 (27): : 3273 - 3279
  • [28] The Effect of Magnetic Field on a Quantum Rod Qubit
    Sun, Yong
    Ding, Zhao-Hua
    Xiao, Jing-Lin
    [J]. JOURNAL OF LOW TEMPERATURE PHYSICS, 2012, 166 (5-6) : 268 - 278
  • [29] Anisotropic quantum dots: Correspondence between quantum and classical Wigner molecules, parity symmetry, and broken-symmetry states
    Szafran, B
    Peeters, FM
    Bednarek, S
    Adamowski, J
    [J]. PHYSICAL REVIEW B, 2004, 69 (12)
  • [30] Short-time decoherence for general system-environment interactions
    Tolkunov, D
    Privman, V
    [J]. PHYSICAL REVIEW A, 2004, 69 (06): : 062309 - 1