Tunable potentials and decoherence effect on polaron in nanostructures

被引:23
作者
Fotue, A. J. [1 ]
Fobasso, M. F. C. [1 ]
Kenfack, S. C. [1 ,2 ]
Tiotsop, M. [1 ]
Djomou, J. -R. D. [1 ]
Ekosso, C. M. [1 ]
Nguimeya, G. -P. [1 ]
Danga, J. E. [1 ]
Tsiaze, R. M. Keumo [1 ,2 ,3 ]
Fai, L. C. [1 ]
机构
[1] Univ Dschang, Dept Phys, Mesoscop & Multilayer Struct Lab, Fac Sci, POB 479, Dschang, Cameroon
[2] Univ Abomey Calavi, Int Chair Math Phys & Applicat ICMPA UNESCO Chair, 072 BP 50, Cotonou, Benin
[3] Univ Yaounde I, Dept Phys, Lab Mech Mat & Struct, Fac Sci, POB 812, Yaounde, Cameroon
来源
EUROPEAN PHYSICAL JOURNAL PLUS | 2016年 / 131卷 / 06期
关键词
QUANTUM-DOT QUBIT; ROD QUBIT; CONFINEMENT; FIELD;
D O I
10.1140/epjp/i2016-16205-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We studied the effect of the tunable potential and decoherence of polaron in nanostructures. We have arbitrarily chosen eight potentials: the elliptical potential, square potential, triangular potential, the quadratic potential, the delta potential, the Gaussian potential, the pseudo-harmonic potential and Coulombic potential. In order to evaluate different polaronic parameters, we used the unitary transformation of LLP and the Pekar-type variational method (PTVM). This system can be considered as a two-level quantum system. We demonstrate in this work that the elliptical potential best confines the polaron and provides interesting information transfer, whereas, Gaussian, pseudo-harmonic and Coulombic potentials transfer information slowly. It is also found in this work that the Coulomb potential seems to be the most chaotic compared to the seven other used. This work confirms that the choice of a potential is crucial for the study of decoherence in nanostructures.
引用
收藏
页数:15
相关论文
共 36 条
  • [1] Decoherence and programmable quantum computation
    Barnes, JP
    Warren, WS
    [J]. PHYSICAL REVIEW A, 1999, 60 (06): : 4363 - 4374
  • [2] Electronic structure and nonlinear optical rectification in a quantum dot: effects of impurities and external electric field
    Baskoutas, S.
    Paspalakis, E.
    Terzis, A. F.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (39)
  • [3] Two-Qubit Gate of Combined Single-Spin Rotation and Interdot Spin Exchange in a Double Quantum Dot
    Brunner, R.
    Shin, Y. -S.
    Obata, T.
    Pioro-Ladriere, M.
    Kubo, T.
    Yoshida, K.
    Taniyama, T.
    Tokura, Y.
    Tarucha, S.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (14)
  • [4] A quantum pseudodot system with a two-dimensional pseudoharmonic potential
    Cetin, A.
    [J]. PHYSICS LETTERS A, 2008, 372 (21) : 3852 - 3856
  • [5] Chen SH, 2008, COMMUN THEOR PHYS, V50, P1287, DOI 10.1088/0253-6102/50/6/07
  • [6] Chen SH, 2009, CHINESE J ELECTRON, V18, P262
  • [7] Cho A. Y., 1975, Progress in Solid State Chemistry, V10, P157, DOI 10.1016/0079-6786(75)90005-9
  • [8] DISORDER OF AN ALAS-GAAS SUPER-LATTICE BY SILICON IMPLANTATION
    COLEMAN, JJ
    DAPKUS, PD
    KIRKPATRICK, CG
    CAMRAS, MD
    HOLONYAK, N
    [J]. APPLIED PHYSICS LETTERS, 1982, 40 (10) : 904 - 906
  • [9] Decoherence in strongly coupled quantum oscillators
    de Ponte, MA
    de Oliveira, MC
    Moussa, MHY
    [J]. ANNALS OF PHYSICS, 2005, 317 (01) : 72 - 106
  • [10] Scalable qubit architecture based on holes in quantum dot molecules
    Economou, Sophia E.
    Climente, Juan I.
    Badolato, Antonio
    Bracker, Allan S.
    Gammon, Daniel
    Doty, Matthew F.
    [J]. PHYSICAL REVIEW B, 2012, 86 (08)