Variational matrix-product-state approach to quantum impurity models

被引:108
作者
Weichselbaum, A. [1 ,2 ]
Verstraete, F. [3 ]
Schollwoeck, U. [1 ,2 ]
Cirac, J. I. [4 ]
von Delft, Jan [1 ,2 ]
机构
[1] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[2] Univ Munich, Dept Phys, Ctr NanoSci, D-80333 Munich, Germany
[3] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[4] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 16期
基金
美国国家科学基金会;
关键词
NUMERICAL RENORMALIZATION-GROUP; ANDERSON MODEL; SPIN CHAINS; SYSTEMS;
D O I
10.1103/PhysRevB.80.165117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a unified framework for renormalization group methods, including Wilson's numerical renormalization group (NRG), and White's density-matrix renormalization group (DMRG), within the language of matrix-product-states. This allows improvements over Wilson's NRG for quantum impurity models, as we illustrate for the one-channel Kondo model. Moreover, we use a variational method for evaluating Green's functions. The proposed method is more flexible in its description of spectral properties at finite frequencies, opening the way to time-dependent, out-of-equilibrium impurity problems. It also substantially improves computational efficiency for one-channel impurity problems, suggesting potentially linear scaling of complexity for n-channel problems.
引用
收藏
页数:7
相关论文
共 36 条
[31]   Sum-rule conserving spectral functions from the numerical renormalization group [J].
Weichselbaum, Andreas ;
von Delft, Jan .
PHYSICAL REVIEW LETTERS, 2007, 99 (07)
[32]   DENSITY-MATRIX FORMULATION FOR QUANTUM RENORMALIZATION-GROUPS [J].
WHITE, SR .
PHYSICAL REVIEW LETTERS, 1992, 69 (19) :2863-2866
[33]   Real-time evolution using the density matrix renormalization group [J].
White, SR ;
Feiguin, AE .
PHYSICAL REVIEW LETTERS, 2004, 93 (07) :076401-1
[34]   RENORMALIZATION GROUP - CRITICAL PHENOMENA AND KONDO PROBLEM [J].
WILSON, KG .
REVIEWS OF MODERN PHYSICS, 1975, 47 (04) :773-840
[35]   RENORMALIZATION-GROUP CALCULATION OF EXCITATION PROPERTIES FOR IMPURITY MODELS [J].
YOSHIDA, M ;
WHITAKER, MA ;
OLIVEIRA, LN .
PHYSICAL REVIEW B, 1990, 41 (13) :9403-9414
[36]   Energy resolution and discretization artifacts in the numerical renormalization group [J].
Zitko, Rok ;
Pruschke, Thomas .
PHYSICAL REVIEW B, 2009, 79 (08)