Variational matrix-product-state approach to quantum impurity models

被引:107
作者
Weichselbaum, A. [1 ,2 ]
Verstraete, F. [3 ]
Schollwoeck, U. [1 ,2 ]
Cirac, J. I. [4 ]
von Delft, Jan [1 ,2 ]
机构
[1] Univ Munich, Dept Phys, Arnold Sommerfeld Ctr Theoret Phys, D-80333 Munich, Germany
[2] Univ Munich, Dept Phys, Ctr NanoSci, D-80333 Munich, Germany
[3] Univ Vienna, Inst Theoret Phys, A-1090 Vienna, Austria
[4] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
来源
PHYSICAL REVIEW B | 2009年 / 80卷 / 16期
基金
美国国家科学基金会;
关键词
NUMERICAL RENORMALIZATION-GROUP; ANDERSON MODEL; SPIN CHAINS; SYSTEMS;
D O I
10.1103/PhysRevB.80.165117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a unified framework for renormalization group methods, including Wilson's numerical renormalization group (NRG), and White's density-matrix renormalization group (DMRG), within the language of matrix-product-states. This allows improvements over Wilson's NRG for quantum impurity models, as we illustrate for the one-channel Kondo model. Moreover, we use a variational method for evaluating Green's functions. The proposed method is more flexible in its description of spectral properties at finite frequencies, opening the way to time-dependent, out-of-equilibrium impurity problems. It also substantially improves computational efficiency for one-channel impurity problems, suggesting potentially linear scaling of complexity for n-channel problems.
引用
收藏
页数:7
相关论文
共 36 条
[1]   Numerical renormalization group for bosonic systems and application to the sub-ohmic spin-boson model [J].
Bulla, R ;
Tong, NH ;
Vojta, M .
PHYSICAL REVIEW LETTERS, 2003, 91 (17)
[2]   Numerical renormalization group calculations for the self-energy of the impurity Anderson model [J].
Bulla, R ;
Hewson, AC ;
Pruschke, T .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (37) :8365-8380
[3]   Alternative discretization in the numerical renormalization-group method [J].
Campo, VL ;
Oliveira, LN .
PHYSICAL REVIEW B, 2005, 72 (10)
[4]   TRANSPORT-COEFFICIENTS OF THE ANDERSON MODEL VIA THE NUMERICAL RENORMALIZATION-GROUP [J].
COSTI, TA ;
HEWSON, AC ;
ZLATIC, V .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1994, 6 (13) :2519-2558
[5]   Time-dependent density-matrix renormalization-group using adaptive effective Hilbert spaces -: art. no. P04005 [J].
Daley, AJ ;
Kollath, C ;
Schollwöck, U ;
Vidal, G .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[6]   Equivalence of the variational matrix product method and the density matrix renormalization group applied to spin chains [J].
Dukelsky, J ;
Martin-Delgado, MA ;
Nishino, T ;
Sierra, G .
EUROPHYSICS LETTERS, 1998, 43 (04) :457-462
[7]   FINITELY CORRELATED STATES ON QUANTUM SPIN CHAINS [J].
FANNES, M ;
NACHTERGAELE, B ;
WERNER, RF .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 144 (03) :443-490
[8]   Optimal broadening of finite energy spectra in the numerical renormalization group: Application to dissipative dynamics in two-level systems [J].
Freyn, Axel ;
Florens, Serge .
PHYSICAL REVIEW B, 2009, 79 (12)
[9]   Energy-resolved inelastic electron scattering off a magnetic impurity -: art. no. 205125 [J].
Garst, M ;
Wölfle, P ;
Borda, L ;
von Delft, J ;
Glazman, L .
PHYSICAL REVIEW B, 2005, 72 (20)
[10]   Density matrix renormalization group study of a quantum impurity model with Landau-Zener time-dependent Hamiltonian [J].
Guo, Cheng ;
Weichselbaum, Andreas ;
Kehrein, Stefan ;
Xiang, Tao ;
von Delft, Jan .
PHYSICAL REVIEW B, 2009, 79 (11)