Riemann-Liouville fractional stochastic evolution equations driven by both Wiener process and fractional Brownian motion

被引:10
|
作者
Yang, Min [1 ]
Gu, Haibo [2 ]
机构
[1] Taiyuan Univ Technol, Coll Math, Taiyuan 030024, Peoples R China
[2] Xinjiang Normal Univ, Sch Math Sci, Urumqi 830017, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Liouville fractional derivative; Stochastic evolution equations; Fractional Brownian motion; Mild solution; DIFFERENTIAL-EQUATIONS; CAUCHY-PROBLEMS; EXISTENCE;
D O I
10.1186/s13660-020-02541-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article is devoted to the study of the existence and uniqueness of mild solution to a class of Riemann-Liouville fractional stochastic evolution equations driven by both Wiener process and fractional Brownian motion. Our results are obtained by using fractional calculus, stochastic analysis, and the fixed-point technique. Moreover, an example is provided to illustrate the application of the obtained abstract results.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Stochastic differential equations driven by a Wiener process and fractional Brownian motion: Convergence in Besov space with respect to a parameter
    Mishura, Yu. S.
    Posashkova, S. V.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) : 1166 - 1180
  • [42] Transportation inequalities for fractional stochastic functional differential equations driven by fractional Brownian motion
    Boufoussi B.
    Hajji S.
    Mouchtabih S.
    Afrika Matematika, 2018, 29 (3-4) : 575 - 589
  • [43] RIEMANN-LIOUVILLE FRACTIONAL COSINE FUNCTIONS
    Mei, Zhan-Dong
    Peng, Ji-Gen
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2016,
  • [44] APPROXIMATE CONTROLLABILITY OF FRACTIONAL EVOLUTION SYSTEMS WITH RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Liu, Zhenhai
    Li, Xiuwen
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (04) : 1920 - 1933
  • [45] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Jessada Tariboon
    Sotiris K Ntouyas
    Weerawat Sudsutad
    Boundary Value Problems, 2014
  • [46] Nonlocal Hadamard fractional integral conditions for nonlinear Riemann-Liouville fractional differential equations
    Tariboon, Jessada
    Ntouyas, Sotiris K.
    Sudsutad, Weerawat
    BOUNDARY VALUE PROBLEMS, 2014,
  • [47] Boundary Controllability of Riemann-Liouville Fractional Semilinear Evolution Systems
    Tajani, Asmae
    El Alaoui, Fatima-Zahrae
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 198 (02) : 767 - 780
  • [48] The Solutions of Some Riemann-Liouville Fractional Integral Equations
    Kaewnimit, Karuna
    Wannalookkhee, Fongchan
    Nonlaopon, Kamsing
    Orankitjaroen, Somsak
    FRACTAL AND FRACTIONAL, 2021, 5 (04)
  • [49] Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion
    Guerra, Joao
    Nualart, David
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (05) : 1053 - 1075
  • [50] Stochastic differential equations driven by fractional Brownian motion and Poisson point process
    Bai, Lihua
    Ma, Jin
    BERNOULLI, 2015, 21 (01) : 303 - 334