On estimation of the logarithmic Sobolev constant and gradient estimates of heat semigroups

被引:48
作者
Wang, FY
机构
[1] Department of Mathematics, Beijing Normal University
关键词
D O I
10.1007/s004400050102
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents some explicit lower bound estimates of logarithmic Sobolev constant for diffusion processes on a compact Riemannian manifold with negative Ricci curvature. Let Ric greater than or equal to - K for some K > 0 and d, D be respectively the dimension and the diameter of the manifold. If the boundary of the manifold is either empty or convex, then the logarithmic Sobolev constant for Brownian motion is not less than GRAPHICS Next, the gradient estimates of heat semigroups (including the Neumann heat semigroup and the Dirichlet one) are studied by using coupling method together with a derivative formula modified from [11]. The resulting estimates recover or improve those given in [7,21] for harmonic functions.
引用
收藏
页码:87 / 101
页数:15
相关论文
共 22 条
[1]  
[Anonymous], 1984, EIGENVALUES RIEMANNI
[2]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[3]  
BAKRY D, 1985, LECT NOTES MATH, V1123, P175
[4]  
BISMUT JM, 1986, J DIFFER GEOM, V23, P207
[5]  
CHEN MF, 1994, SCI CHINA SER A, V37, P1
[6]   COUPLING METHODS FOR MULTIDIMENSIONAL DIFFUSION-PROCESSES [J].
CHEN, MF ;
LI, SF .
ANNALS OF PROBABILITY, 1989, 17 (01) :151-177
[7]  
CHEN MF, IN PRESS J FUNCT ANA
[8]   GRADIENT ESTIMATES ON MANIFOLDS USING COUPLING [J].
CRANSTON, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (01) :110-124
[9]   HYPERCONTRACTIVITY AND SPECTRAL GAP OF SYMMETRICAL DIFFUSIONS WITH APPLICATIONS TO THE STOCHASTIC ISING-MODELS [J].
DEUSCHEL, JD ;
STROOCK, DW .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 92 (01) :30-48
[10]   FORMULAS FOR THE DERIVATIVES OF HEAT SEMIGROUPS [J].
ELWORTHY, KD ;
LI, XM .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 125 (01) :252-286