Modularity from fluctuations in random graphs and complex networks -: art. no. 025101

被引:0
|
作者
Guimerà, R [1 ]
Sales-Pardo, M [1 ]
Amaral, LAN [1 ]
机构
[1] Northwestern Univ, Dept Biol & Chem Engn, Evanston, IL 60208 USA
关键词
D O I
暂无
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The mechanisms by which modularity emerges in complex networks are not well understood but recent reports have suggested that modularity may arise from evolutionary selection. We show that finding the modularity of a network is analogous to finding the ground-state energy of a spin system. Moreover, we demonstrate that, due to fluctuations, stochastic network models give rise to modular networks. Specifically, we show both numerically and analytically that random graphs and scale-free networks have modularity. We argue that this fact must be taken into consideration to define statistically significant modularity in complex networks.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Random walks on complex networks with inhomogeneous impact -: art. no. 057104
    Eisler, Z
    Kertész, J
    PHYSICAL REVIEW E, 2005, 71 (05):
  • [2] Random graphs with hidden color -: art. no. 015102
    Söderberg, B
    PHYSICAL REVIEW E, 2003, 68 (01)
  • [3] Correlated random networks -: art. no. 228701
    Berg, J
    Lässig, M
    PHYSICAL REVIEW LETTERS, 2002, 89 (22) : 228701 - 228701
  • [4] Resistance and resistance fluctuations in random resistor networks under biased percolation -: art. no. 066119
    Pennetta, C
    Reggiani, L
    Trefán, G
    Alfinito, E
    PHYSICAL REVIEW E, 2002, 65 (06): : 1 - 066119
  • [5] Are randomly grown graphs really random? art. no. 041902
    Callaway, DS
    Hopcroft, JE
    Kleinberg, JM
    Newman, MEJ
    Strogatz, SH
    PHYSICAL REVIEW E, 2001, 64 (04) : 7
  • [6] General formalism for inhomogeneous random graphs -: art. no. 066121
    Söderberg, B
    PHYSICAL REVIEW E, 2002, 66 (06) : 6
  • [7] Properties of random graphs with hidden color -: art. no. 026107
    Söderberg, B
    PHYSICAL REVIEW E, 2003, 68 (02)
  • [8] Clique percolation in random networks -: art. no. 160202
    Derényi, I
    Palla, G
    Vicsek, T
    PHYSICAL REVIEW LETTERS, 2005, 94 (16)
  • [9] Aggregation process on complex networks - art. no. 051107
    Morelli, LG
    Cerdeira, HA
    PHYSICAL REVIEW E, 2004, 69 (05): : 8 - 1
  • [10] Subgraph centrality in complex networks -: art. no. 056103
    Estrada, E
    Rodríguez-Velázquez, JA
    PHYSICAL REVIEW E, 2005, 71 (05)