A highly reliable die bonding approach for high power devices by low temperature pressureless sintering using a novel Cu nanoparticle paste

被引:7
|
作者
Huang, Hai-Jun [1 ,2 ]
Wu, Xue [1 ,2 ]
Zhou, Min-Bo [1 ,2 ]
Zhang, Xin-Ping [1 ,2 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Peoples R China
[2] Guangdong Prov Engn Technol R&D Ctr Elect Packagi, Guangzhou 510640, Peoples R China
来源
2020 IEEE 70TH ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2020) | 2020年
基金
中国国家自然科学基金;
关键词
Cu nanoparticle; presureless sintering; bimodal size distribution; shear strength; high power electronics; IN-SITU;
D O I
10.1109/ECTC32862.2020.00266
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A novel Cu nanoparticle (NP) paste with the capability of pressureless sintering at low temperature in nitrogen is developed using a type of easily synthesized Cu NPs. The feature of bimodal size distribution of Cu NPs can be inherited to the Cu NP paste, which facilitates the formation of dense as-sintered microstructure, mainly consisted of Cu bulks, in sintered joints. The optimization of the sintering process condition has been achieved by using Taguchi method, and so-obtained Cu paste joints show shear strength as high as 65.24 MPa. Moreover, the formulation of the solvent containing ethylene glycol (EG) and glycerol with an optimized weight ratio, which is employed for preparation of the Cu NP paste, has also been demonstrated to be crucial for the formation of Cu bulks in joints and so-induced superior bonding strength. Finally, the results of high temperature storage (HTS) tests of Cu paste joints after aging at 200 degrees C for 600 h show that there is a slight degradation of bonding strength of joints, mainly due to the generation of voids at the Cu-paste/Cu interface.
引用
收藏
页码:1697 / 1702
页数:6
相关论文
共 26 条
  • [1] Bonding Properties of Cu Paste in Low Temperature Pressureless Processes
    Konno, Satoshi
    Yamauchi, Shinichi
    Hattori, Takashi
    Anai, Kei
    IEEE 72ND ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2022), 2022, : 1133 - 1137
  • [2] Rapid and low temperature sintering bonding using Cu nanoparticle film for power electronic packaging
    Wu, Yongchao
    Zou, Guisheng
    Wang, Shuaiqi
    Guo, Wei
    Zhang, Hongqiang
    Peng, Peng
    Feng, Bin
    Liu, Lei
    APPLIED SURFACE SCIENCE, 2022, 603
  • [3] Extraordinarily enhanced sintering performance of pressureless sinterable Cu nanoparticle paste for achieving robust die-attach bonding by using reducing hybrid solvent
    Huang, Hai-Jun
    Zhou, Min-Bo
    Zhang, Xin-Ping
    IEEE 71ST ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2021), 2021, : 583 - 589
  • [4] Die-bonding performance and mechanism based on the sintering of micro Ag paste for high power devices
    Takemasa, Tetsu
    Ueshima, Minoru
    Jiu, Jinting
    Suganuma, Katsuaki
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2016, : 377 - 380
  • [5] Low-temperature Cu-to-Cu electrode bonding by sintering Cu core-Ag shell nanoparticle paste
    Chung, Seok-Hwan
    Kim, Jong Tae
    Jeong, Sang Won
    MATERIALS TODAY COMMUNICATIONS, 2023, 34
  • [6] Low-Temperature Die Attachment by Pressureless Cu Sintering for Semiconductor Packaging
    Dai, Jingru
    Wang, Yangang
    Grant, Thomas
    Morshed, Muhmmad
    JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (11) : 7607 - 7613
  • [7] Low-Temperature Die Attachment by Pressureless Cu Sintering for Semiconductor Packaging
    Jingru Dai
    Yangang Wang
    Thomas Grant
    Muhmmad Morshed
    Journal of Electronic Materials, 2023, 52 : 7607 - 7613
  • [8] Superb sinterability of the Cu paste consisting of bimodal size distribution Cu nanoparticles for low-temperature and pressureless sintering of large-area die attachment and the sintering mechanism
    Hou, Bin
    Huang, Hai-Jun
    Wang, Chun-Meng
    Zhou, Min-Bo
    Zhang, Xin-Ping
    IEEE 72ND ELECTRONIC COMPONENTS AND TECHNOLOGY CONFERENCE (ECTC 2022), 2022, : 2064 - 2070
  • [9] Die Bonding Performance Using Bimodal Cu Particle Paste Under Different Sintering Atmospheres
    Gao, Yue
    Zhang, Hao
    Li, Wanli
    Jiu, Jinting
    Nagao, Shijo
    Sugahara, Tohru
    Suganuma, Katsuaki
    JOURNAL OF ELECTRONIC MATERIALS, 2017, 46 (07) : 4575 - 4581
  • [10] Die Bonding Performance Using Bimodal Cu Particle Paste Under Different Sintering Atmospheres
    Yue Gao
    Hao Zhang
    Wanli Li
    Jinting Jiu
    Shijo Nagao
    Tohru Sugahara
    Katsuaki Suganuma
    Journal of Electronic Materials, 2017, 46 : 4575 - 4581