Direct Integrability for State Feedback Optimal Control with Singular Solutions

被引:0
作者
Di Giamberardino, Paolo [1 ]
Iacoviello, Daniela [1 ,2 ]
机构
[1] Sapienza Univ Rome, Dept Comp Control & Management Engn Antonio Ruber, Rome, Italy
[2] Inst Syst Anal & Comp Sci Antonio Ruberti, Rome, Italy
来源
INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS (ICINCO 2018) | 2020年 / 613卷
关键词
Optimal control; Singular control; Costate independent singular surface; SIR epidemic model; MODEL;
D O I
10.1007/978-3-030-31993-9_24
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper studies the problem of determining the optimal control when singular arcs are present in the solution. In the general classical approach, the expressions obtained depend on the state and the costate variables at the same time, so requiring a forward-backward integration for the computation of the control. In this paper, firstly sufficient conditions on the dynamics structure are discussed, in order to have both the control and the switching function depending on the state only, computable by a simple forward integration. Then, the possibility to extend this result by means of a preliminary dynamic extension is presented. The approach has been checked and validated making use of a classical SIR epidemic model.
引用
收藏
页码:482 / 502
页数:21
相关论文
共 13 条
[1]  
Athans M., 1996, OPTIMAL CONTROL
[2]  
Bakare E.A., 2014, INT J APPL MATH RES, V3
[3]   Optimal control of deterministic epidemics [J].
Behncke, H .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2000, 21 (06) :269-285
[4]  
Bryson A.E., 1969, Applied Optimal Control
[5]   Chromogranin A: From Laboratory to Clinical Aspects of Patients with Neuroendocrine Tumors [J].
Di Giacinto, Paola ;
Rota, Francesca ;
Rizza, Laura ;
Campana, Davide ;
Isidori, Andrea ;
Lania, Andrea ;
Lenzi, Andrea ;
Zuppi, Paolo ;
Baldelli, Roberto .
INTERNATIONAL JOURNAL OF ENDOCRINOLOGY, 2018, 2018
[6]   Optimal control of SIR epidemic model with state dependent switching cost index [J].
Di Giamberardino, Paolo ;
Iacoviello, Daniela .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2017, 31 :377-380
[7]  
DiGiamberardino P, 2018, IEEE T SYST MAN CYBE
[8]   FINDING CANDIDATE SINGULAR OPTIMAL CONTROLS - A STATE OF THE ART SURVEY [J].
FRASERANDREWS, G .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1989, 60 (02) :173-190
[9]   A SURVEY OF THE MAXIMUM-PRINCIPLES FOR OPTIMAL-CONTROL PROBLEMS WITH STATE CONSTRAINTS [J].
HARTL, RF ;
SETHI, SP ;
VICKSON, RG .
SIAM REVIEW, 1995, 37 (02) :181-218
[10]   SINGULAR SOLUTIONS IN PROBLEMS OF OPTIMAL CONTROL [J].
JOHNSON, CD ;
GIBSON, JE .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1963, AC 8 (01) :4-&