CO2 molecule as a quantum realization of the 1:1:2 resonant swing-spring with monodromy -: art. no. 024302

被引:61
作者
Cushman, RH [1 ]
Dullin, HR
Giacobbe, A
Holm, DD
Joyeux, M
Lynch, P
Sadovskií, DA
Zhilinskií, BI
机构
[1] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
[2] Univ Loughborough, Loughborough LE11 3TU, Leics, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[4] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[5] Univ Grenoble 1, Spectrometrie Phys Lab, F-38402 St Martin Dheres, France
[6] Met Eireann, Dublin 9, Ireland
[7] Univ Littoral, CNRS, UMR 8101, F-59140 Dunkerque, France
关键词
D O I
10.1103/PhysRevLett.93.024302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the wide class of systems modeled by an integrable approximation to the 3 degrees of freedom elastic pendulum with 1:1:2 resonance, or the swing-spring. This approximation has monodromy which prohibits the existence of global action-angle variables and complicates the dynamics. We study the quantum swing-spring formed by bending and symmetric stretching vibrations of the CO2 molecule. We uncover quantum monodromy of CO2 as a nontrivial codimension 2 defect of the three dimensional energy-momentum lattice of its quantum states.
引用
收藏
页码:024302 / 1
页数:4
相关论文
共 16 条
  • [1] Geometric phases, reduction and Lie-Poisson structure for the resonant three-wave interaction
    Alber, MS
    Luther, GG
    Marsden, JE
    Robbins, JM
    [J]. PHYSICA D, 1998, 123 (1-4): : 271 - 290
  • [2] Cushman R.H., 2015, Global Aspects of Classical Integrable Systems, V2nd ed.
  • [3] MULTIPLE LIE-POISSON STRUCTURES, REDUCTIONS, AND GEOMETRIC PHASES FOR THE MAXWELL-BLOCH TRAVELING-WAVE EQUATIONS
    DAVID, D
    HOLM, DD
    [J]. JOURNAL OF NONLINEAR SCIENCE, 1992, 2 (02) : 241 - 262
  • [4] ON GLOBAL ACTION-ANGLE COORDINATES
    DUISTERMAAT, JJ
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1980, 33 (06) : 687 - 706
  • [5] Monodromy in the resonant swing spring
    Dullin, H
    Giacobbe, A
    Cushman, R
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 190 (1-2) : 15 - 37
  • [6] Global bending quantum number and the absence of monodromy in the HCN⇆CNH molecule -: art. no. 032504
    Efstathiou, K
    Joyeux, M
    Sadovskií, DA
    [J]. PHYSICAL REVIEW A, 2004, 69 (03): : 032504 - 1
  • [7] GIACOBBE A, IN PRESS
  • [8] Stepwise Precession of the Resonant Swinging Spring
    Holm, Darryl D.
    Lynch, Peter
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2002, 1 (01): : 44 - 64
  • [9] HOMOCLINIC CHAOS IN A LASER MATTER SYSTEM
    HOLM, DD
    KOVACIC, G
    [J]. PHYSICA D, 1992, 56 (2-3): : 270 - 300
  • [10] Pulsation and precession of the resonant swinging spring
    Lynch, P
    Houghton, C
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2004, 190 (1-2) : 38 - 62