On the Uniform Convergence of Fourier Series Expansions for Sturm-Liouville Problems with a Spectral Parameter in the Boundary Conditions

被引:12
作者
Kerimov, Nazim B. [1 ]
Maris, Emir A. [2 ]
机构
[1] Khazar Univ, Dept Math, Mehseti St 41, Baku 1096, Azerbaijan
[2] Mersin Univ, Tech Sci Vocat Sch, TR-33343 Mersin, Turkey
关键词
Sturm-Liouville problems; Fourier series; uniform convergence; L-P; EIGENVALUE PARAMETER; ROOT FUNCTIONS; EIGENFUNCTIONS; SYSTEM; INFINITY; BASICITY;
D O I
10.1007/s00025-018-0864-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the uniform convergence of the spectral expansions in terms of eigenfunctions of the boundary value problem -y '' q (x) y = lambda y, 0 < x < 1, (a(0)lambda + b(0)) y (0) = (c(0)lambda + d(0)) y' (0), (a(1)lambda + b(1)) y (1) = (c(1)lambda + d(1)) y' (1) where lambda is a spectral parameter, q (x) is a real-valued continuous function on the interval [0, 1] and a(k), b(k), c(k), d(k) (k = 0,1) are real constants which satisfy the conditions sigma(k) = (-1)(k) (a(k)d(k) - b(k)c(k)) < 0 (k = 0, 1).
引用
收藏
页数:16
相关论文
共 23 条
[1]   Defect Basis Property of a System of Root Functions of a Sturm-Liouville Problem with Spectral Parameter in the Boundary Conditions [J].
Aliev, Z. S. ;
Dun'yamalieva, A. A. .
DIFFERENTIAL EQUATIONS, 2015, 51 (10) :1249-1266
[2]  
Aliev Z.S., 2013, DOKL AKAD NAUK, V449, P7
[3]  
Aliev Z.S., 2011, DIFF URAVN, V47, P764
[4]  
ALIYEV ZS, 2010, DOKL AKAD NAUK+, V433, P583
[5]  
Bary N.K., 1964, Treatise on Trigonometric Series, VI
[6]   2-POINT BOUNDARY-VALUE PROBLEMS WITH EIGENVALUE PARAMETER CONTAINED IN BOUNDARY-CONDITIONS [J].
FULTON, CT .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1977, 77 :293-308
[7]  
Gulyaev D. A., 2011, DIFF URAVN, V47, P1503
[8]  
Gulyaev D.A., 2012, DIFF EQUAT, V48, P1450
[9]   On the uniform convergence of the Fourier series for a spectral problem with squared spectral parameter in a boundary condition [J].
Kapustin, N. Yu. .
DIFFERENTIAL EQUATIONS, 2010, 46 (10) :1507-1510
[10]  
Kapustin N.Yu., 2011, DIFF EQUAT, V47, P1394