Positive semidefinite zero forcing numbers of two classes of graphs

被引:3
作者
Wang, Lusheng [1 ]
Yang, Boting [2 ]
机构
[1] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
[2] Univ Regina, Dept Comp Sci, Regina, SK, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Positive semidefinite zero forcing number; Zero forcing number; Maximum positive semidefinite nullity; Minimum rank; MINIMUM RANK; MAXIMUM NULLITY; BOUNDS; SETS;
D O I
10.1016/j.tcs.2018.05.009
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The positive semidefinite zero forcing number is a variant of the zero forcing number, which is an important parameter in the study of minimum rank/maximum nullity problems. In this paper, we consider two classes of graphs: matching-chain graphs and claw-free graphs. We first introduce the propagation decomposition of graphs; then we use this decomposition to prove a lower bound for the positive semidefinite zero forcing number of a graph. We apply this lower bound to find the positive semidefinite zero forcing number of matching-chain graphs. We show that the positive semidefinite zero forcing number and the zero forcing number agree for matching-chain graphs. As a consequence, we prove the conjecture about the positive semidefinite zero forcing number of the Cartesian product of two paths, and partially prove the conjecture about the positive semidefinite zero forcing number of the Cartesian product of a cycle and a path. For claw-free graphs, we establish a relationship between the positive semidefinite zero forcing number and the zero forcing number. We also prove that it is NP-complete to find the positive semidefinite zero forcing number of line graphs. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:44 / 54
页数:11
相关论文
共 30 条
  • [1] Zero forcing sets and the minimum rank of graphs
    Barioli, Francesco
    Barrett, Wayne
    Butler, Steve
    Cioaba, Sebastian M.
    Cvetkovic, Dragos
    Fallat, Shaun M.
    Godsil, Chris
    Haemers, Willem
    Hogben, Leslie
    Mikkelson, Rana
    Narayan, Sivaram
    Pryporova, Olga
    Sciriha, Irene
    So, Wasin
    Stevanovic, Dragan
    van der Holst, Hein
    Vander Meulen, Kevin N.
    Wehe, Amy Wangsness
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2008, 428 (07) : 1628 - 1648
  • [2] Parameters Related to Tree-Width, Zero Forcing, and Maximum Nullity of a Graph
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Shader, Bryan
    van den Driessche, P.
    van der Holst, Hein
    [J]. JOURNAL OF GRAPH THEORY, 2013, 72 (02) : 146 - 177
  • [3] Barioli F, 2011, ELECTRON J LINEAR AL, V22, P10
  • [4] Zero forcing parameters and minimum rank problems
    Barioli, Francesco
    Barrett, Wayne
    Fallat, Shaun M.
    Hall, H. Tracy
    Hogben, Leslie
    Shader, Bryan
    van den Driessche, P.
    van der Holst, Hein
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (02) : 401 - 411
  • [5] Bounds for minimum semidefinite rank from superpositions and cutsets
    Beagley, Jonathan
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Radzwion, Eileen
    Rimer, Sara P.
    Tomasino, Rachael
    Wolfe, Jennifer
    Zimmer, Andrew M.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (10) : 4041 - 4061
  • [6] ON THE MINIMUM RANK AMONG POSITIVE SEMIDEFINITE MATRICES WITH A GIVEN GRAPH
    Booth, Matthew
    Hackney, Philip
    Harris, Benjamin
    Johnson, Charles R.
    Lay, Margaret
    Mitchell, Lon H.
    Narayan, Sivaram K.
    Pascoe, Amanda
    Steinmetz, Kelly
    Sutton, Brian D.
    Wang, Wendy
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2008, 30 (02) : 731 - 740
  • [7] Full control by locally induced relaxation
    Burgarth, Daniel
    Giovannetti, Vittorio
    [J]. PHYSICAL REVIEW LETTERS, 2007, 99 (10)
  • [8] Dyer D, 2008, LECT NOTES COMPUT SC, V5034, P143, DOI 10.1007/978-3-540-68880-8_15
  • [9] Vertex and edge spread of zero forcing number, maximum nullity, and minimum rank of a graph
    Edholm, Christina J.
    Hogben, Leslie
    My Huynh
    LaGrange, Joshua
    Row, Darren D.
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (12) : 4352 - 4372
  • [10] Ekstrand J, 2012, ELECTRON J LINEAR AL, V23, P79