Newtonian Limits of Isolated Cosmological Systems on Long Time Scales
被引:19
作者:
Liu, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Monash Univ, Sch Math Sci, 9 Rainforest Walk, Clayton, Vic 3800, AustraliaMonash Univ, Sch Math Sci, 9 Rainforest Walk, Clayton, Vic 3800, Australia
Liu, Chao
[1
]
Oliynyk, Todd A.
论文数: 0引用数: 0
h-index: 0
机构:
Monash Univ, Sch Math Sci, 9 Rainforest Walk, Clayton, Vic 3800, AustraliaMonash Univ, Sch Math Sci, 9 Rainforest Walk, Clayton, Vic 3800, Australia
Oliynyk, Todd A.
[1
]
机构:
[1] Monash Univ, Sch Math Sci, 9 Rainforest Walk, Clayton, Vic 3800, Australia
来源:
ANNALES HENRI POINCARE
|
2018年
/
19卷
/
07期
基金:
澳大利亚研究理事会;
关键词:
PARTIAL-DIFFERENTIAL-EQUATIONS;
RELATIVISTIC PERFECT FLUIDS;
FUTURE STABILITY;
GENERAL-RELATIVITY;
HYPERBOLIC SYSTEMS;
EINSTEIN SYSTEM;
NONLINEAR STABILITY;
LARGE PARAMETER;
FIELD-THEORY;
EXISTENCE;
D O I:
10.1007/s00023-018-0686-2
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We establish the existence of 1-parameter families of -dependent solutions to the Einstein-Euler equations with a positive cosmological constant and a linear equation of state , , for the parameter values . These solutions exist globally to the future, converge as to solutions of the cosmological Poisson-Euler equations of Newtonian gravity, and are inhomogeneous nonlinear perturbations of FLRW fluid solutions.