Cohomology of virtually nilpotent groups with coefficients in Rk

被引:0
作者
Dekimpe, Karel [1 ]
Pouseele, Hannes [1 ]
机构
[1] Katholieke Univ Leuven, B-8500 Kortrijk, Belgium
关键词
D O I
10.1007/BF02773596
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present an explicit description of the cohomology spaces of any finitely generated virtually nilpotent group with (non-trivial) coefficients in a finite-dimensional real vector space. The input of the algorithm we develop to compute these cohomology spaces consists on the one hand of the module structure, and on the other hand of a polynomial crystallographic action of the group. Since. any virtually nilpotent group admits such an action (which can be constructed algorithmically) our methods apply to all finitely generated virtually nilpotent groups. As an application of our results, we present explicit formulas for the dimension of the cohomology spaces of a virtually abelian group with coefficients in a finite-dimensional real vector space, equipped with a particular kind of module structure.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 14 条
[1]   The uniqueness of polynomial crystallographic actions [J].
Benoist, Y ;
Dekimpe, K .
MATHEMATISCHE ANNALEN, 2002, 322 (03) :563-571
[2]  
Brown K. S., 1982, GRADUATE TEXTS MATH, V87
[3]  
de Rham G., 1931, J MATH PURE APPL, V10, P115
[4]   Polycyclic-by-finite groups admit a bounded-degree polynomial structure [J].
Dekimpe, K ;
Igodt, P .
INVENTIONES MATHEMATICAE, 1997, 129 (01) :121-140
[5]   Polynomial structures on polycyclic groups [J].
Dekimpe, K ;
Igodt, P .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (09) :3597-3610
[6]   Polynomial structures for nilpotent groups [J].
Dekimpe, K ;
Igodt, P ;
Lee, KB .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 348 (01) :77-97
[7]   Any virtually polycyclic group admits a NIL-affine crystallographic action [J].
Dekimpe, K .
TOPOLOGY, 2003, 42 (04) :821-832
[8]  
DEKIMPE K, 2002, REAL COHOMOLOGY VIRT
[9]   AFFINE MANIFOLDS WITH NILPOTENT HOLONOMY [J].
FRIED, D ;
GOLDMAN, W ;
HIRSCH, MW .
COMMENTARII MATHEMATICI HELVETICI, 1981, 56 (04) :487-523
[10]  
MACLANE S, 1975, GRUNDLEHREN MATH WIS, V114