Optical Hydrogen Nanothermometry of Plasmonic Nanoparticles under Illumination

被引:9
作者
Tiburski, Christopher [1 ]
Nugroho, Ferry Anggoro Ardy [2 ]
Langhammer, Christoph [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
关键词
nanoparticles; plasmonics; nanothermometry; sensing; palladium hydride; temperature; photothermal; ALTERNATIVE MECHANISM; GOLD NANOPARTICLES; DIFFERENT SIZE; HOT-ELECTRONS; THERMOMETRY; DISSOCIATION; HYSTERESIS; DYNAMICS; LIGHT;
D O I
10.1021/acsnano.2c00035
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The temperature of nanoparticles is a critical parameter in applications that range from biology, to sensors, to photocatalysis. Yet, accurately determining the absolute temperature of nanoparticles is intrinsically difficult because traditional temperature probes likely deliver inaccurate results due to their large thermal mass compared to the nanoparticles. Here we present a hydrogen nanothermometry method that enables a noninvasive and direct measurement of absolute Pd nanoparticle temperature via the temperature dependence of the first-order phase transformation during Pd hydride formation. We apply it to accurately measure light-absorption-induced Pd nanoparticle heating at different irradiated powers with 1 degrees C resolution and to unravel the impact of nanoparticle density in an array on the obtained temperature. In a wider perspective, this work reports a noninvasive method for accurate temperature measurements at the nanoscale, which we predict will find application in, for example, nano-optics, nanolithography, and plasmon-mediated catalysis to distinguish thermal from electronic effects.
引用
收藏
页码:6233 / 6243
页数:11
相关论文
共 50 条
[41]   Optical Chirality from Dark-Field Illumination of Planar Plasmonic Nanostructures [J].
Hwang, Yongsop ;
Hopkins, Ben ;
Wang, Dapeng ;
Mitchell, Arnan ;
Davis, Timothy J. ;
Lin, Jiao ;
Yuan, Xiao-Cong .
LASER & PHOTONICS REVIEWS, 2017, 11 (06)
[42]   Optical Manipulation of Plasmonic Nanoparticles Using Laser Tweezers [J].
Tong, Lianming ;
Miljkovic, Vladimir D. ;
Kall, Mikael .
OPTICAL TRAPPING AND OPTICAL MICROMANIPULATION VII, 2010, 7762
[43]   OPTICAL CHARACTERIZATION OF SUPPORTED GOLD NANOPARTICLES FOR PLASMONIC BIOSENSORS [J].
Pluchery, Olivier ;
Lacaze, Emmanuelle ;
Simion, Monica ;
Miu, Mihaela ;
Bragaru, Adina ;
Radoi, Antonio .
2010 INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS), VOLS 1 AND 2, 2010, :159-162
[44]   Plasmonic Au nano-needle fabricated by optical vortex laser illumination [J].
Izumisawa, Kai ;
Sugimoto, Tatsuyuki ;
Nakamura, Yuri ;
Miyamoto, Katsuhiko ;
Torimoto, Tsukasa ;
Morita, Ryuji ;
Omatsu, Takashige .
OPTICAL MANIPULATION CONFERENCE, 2017, 10252
[45]   Optical Imaging of Individual Plasmonic Nanoparticles in Biological Samples [J].
Xiao, Lehui ;
Yeung, Edward S. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 7, 2014, 7 :89-111
[46]   Theoretical investigation of optical properties of embedded plasmonic nanoparticles [J].
Shabaninezhad, Masoud ;
Kayani, Asghar ;
Ramakrishna, Guda .
CHEMICAL PHYSICS, 2021, 541
[47]   Nanolithography by Plasmonic Heating and Optical Manipulation of Gold Nanoparticles [J].
Fedoruk, Michael ;
Meixner, Marco ;
Carretero-Palacios, Sol ;
Lohmueller, Theobald ;
Feldmann, Jochen .
ACS NANO, 2013, 7 (09) :7648-7653
[48]   Plasmonic Coupling Dynamics of Silver Nanoparticles in an Optical Trap [J].
Blattmann, Marc ;
Rohrbach, Alexander .
NANO LETTERS, 2015, 15 (12) :7816-7821
[49]   YVO4 Nanoparticles Doped with Eu3+ and Nd3+ for Optical Nanothermometry [J].
Kolesnikov, Ilya E. ;
Mamonova, Daria, V ;
Kurochkin, Mikhail A. ;
Kolesnikov, Evgenii Yu ;
Lahderanta, Erkki ;
Manshina, Alina A. .
ACS APPLIED NANO MATERIALS, 2021, 4 (11) :12481-12489
[50]   Optimal plasmonic focusing on a metal disc under radially polarized terahertz illumination [J].
Waselikowski, Stefan ;
Fischer, Christian ;
Wallauer, Jan ;
Walther, Markus .
NEW JOURNAL OF PHYSICS, 2013, 15