Optical Hydrogen Nanothermometry of Plasmonic Nanoparticles under Illumination

被引:9
作者
Tiburski, Christopher [1 ]
Nugroho, Ferry Anggoro Ardy [2 ]
Langhammer, Christoph [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
关键词
nanoparticles; plasmonics; nanothermometry; sensing; palladium hydride; temperature; photothermal; ALTERNATIVE MECHANISM; GOLD NANOPARTICLES; DIFFERENT SIZE; HOT-ELECTRONS; THERMOMETRY; DISSOCIATION; HYSTERESIS; DYNAMICS; LIGHT;
D O I
10.1021/acsnano.2c00035
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The temperature of nanoparticles is a critical parameter in applications that range from biology, to sensors, to photocatalysis. Yet, accurately determining the absolute temperature of nanoparticles is intrinsically difficult because traditional temperature probes likely deliver inaccurate results due to their large thermal mass compared to the nanoparticles. Here we present a hydrogen nanothermometry method that enables a noninvasive and direct measurement of absolute Pd nanoparticle temperature via the temperature dependence of the first-order phase transformation during Pd hydride formation. We apply it to accurately measure light-absorption-induced Pd nanoparticle heating at different irradiated powers with 1 degrees C resolution and to unravel the impact of nanoparticle density in an array on the obtained temperature. In a wider perspective, this work reports a noninvasive method for accurate temperature measurements at the nanoscale, which we predict will find application in, for example, nano-optics, nanolithography, and plasmon-mediated catalysis to distinguish thermal from electronic effects.
引用
收藏
页码:6233 / 6243
页数:11
相关论文
共 50 条
[31]   Optical properties of Platonic clusters of plasmonic nanoparticles [J].
Klimov, V. V. ;
Sharonov, G. V. .
QUANTUM ELECTRONICS, 2020, 50 (03) :237-241
[32]   Tunable Plasmonic Microcapsules with Embedded Noble Metal Nanoparticles for Optical Microsensing [J].
Burel, Celine ;
Ibrahim, Omar ;
Marino, Emanuele ;
Bharti, Harshit ;
Murray, Christopher B. ;
Donnio, Bertrand ;
Fakhraai, Zahra ;
Dreyfus, Remi .
ACS APPLIED NANO MATERIALS, 2022, 5 (02) :2828-2838
[33]   Optical properties of single coupled plasmonic nanoparticles [J].
Tong, Lianming ;
Wei, Hong ;
Zhang, Shunping ;
Li, Zhipeng ;
Xu, Hongxing .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (12) :4100-4109
[34]   Tailoring the Heterostructure of Colloidal Quantum Dots for Ratiometric Optical Nanothermometry [J].
Zhao, Haiguang ;
Vomiero, Alberto ;
Rosei, Federico .
SMALL, 2020, 16 (28)
[35]   Near-infrared optical nanothermometry via upconversion of Ho3+-sensitized nanoparticles [J].
Ryszczynska, Sylwia ;
Martin, Inocencio R. ;
Grzyb, Tomasz .
SCIENTIFIC REPORTS, 2023, 13 (01)
[36]   The Focusing Property of Immersed Plasmonic Nanolenses Under Radially Polarized Illumination [J].
Wang, Er-Wei ;
Li, Ling-Li ;
Yu, Wei-Xing ;
Wang, Tai-Sheng ;
Gao, Jin-Song ;
Fu, Yong-Qi ;
Liu, Yu-Ling .
IEEE PHOTONICS JOURNAL, 2013, 5 (02)
[37]   Polarization-Addressable Optical Movement of Plasmonic Nanoparticles and Hotspot Spin Vortices [J].
Balestrieri, Sergio ;
Romano, Silvia ;
Iodice, Mario ;
Coppola, Giuseppe ;
Zito, Gianluigi .
NANOMATERIALS, 2024, 14 (10)
[38]   Investigating the Performance of Ultra-Sensitive Optical Sensor Using Plasmonic Nanoparticles [J].
Elrashidi, Ali .
NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2016, 8 (06) :465-470
[39]   Plasmonic Hydrogen Sensors [J].
Ai, Bin ;
Sun, Yujing ;
Zhao, Yiping .
SMALL, 2022, 18 (25)
[40]   Plasmonic nanoparticles assemblies: preparation, structural, and optical properties [J].
Buergi, T. ;
Cunningham, A. .
METAMATERIALS VII, 2012, 8423