Optical Hydrogen Nanothermometry of Plasmonic Nanoparticles under Illumination

被引:9
作者
Tiburski, Christopher [1 ]
Nugroho, Ferry Anggoro Ardy [2 ]
Langhammer, Christoph [1 ]
机构
[1] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[2] Vrije Univ Amsterdam, Dept Phys & Astron, NL-1081 HV Amsterdam, Netherlands
关键词
nanoparticles; plasmonics; nanothermometry; sensing; palladium hydride; temperature; photothermal; ALTERNATIVE MECHANISM; GOLD NANOPARTICLES; DIFFERENT SIZE; HOT-ELECTRONS; THERMOMETRY; DISSOCIATION; HYSTERESIS; DYNAMICS; LIGHT;
D O I
10.1021/acsnano.2c00035
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The temperature of nanoparticles is a critical parameter in applications that range from biology, to sensors, to photocatalysis. Yet, accurately determining the absolute temperature of nanoparticles is intrinsically difficult because traditional temperature probes likely deliver inaccurate results due to their large thermal mass compared to the nanoparticles. Here we present a hydrogen nanothermometry method that enables a noninvasive and direct measurement of absolute Pd nanoparticle temperature via the temperature dependence of the first-order phase transformation during Pd hydride formation. We apply it to accurately measure light-absorption-induced Pd nanoparticle heating at different irradiated powers with 1 degrees C resolution and to unravel the impact of nanoparticle density in an array on the obtained temperature. In a wider perspective, this work reports a noninvasive method for accurate temperature measurements at the nanoscale, which we predict will find application in, for example, nano-optics, nanolithography, and plasmon-mediated catalysis to distinguish thermal from electronic effects.
引用
收藏
页码:6233 / 6243
页数:11
相关论文
共 50 条
[21]   Lanthanide-organic frameworks for optical sensing and nanothermometry [J].
Rocha, Joao .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 :S74-S74
[22]   Plasmonic Nanostars with Hot Spots for Efficient Generation of Hot Electrons under Solar Illumination [J].
Kong, Xiang-Tian ;
Wang, Zhiming ;
Govorov, Alexander O. .
ADVANCED OPTICAL MATERIALS, 2017, 5 (15)
[23]   Passive optical sorting of plasmon nanoparticles: Numerical investigation of optimal illumination [J].
Ploschner, M. ;
Mazilu, M. ;
Cizmar, T. ;
Dholakia, K. .
FOURTH INTERNATIONAL WORKSHOP ON THEORETICAL AND COMPUTATIONAL NANOPHOTONICS (TACONA-PHOTONICS 2011), 2011, 1398
[24]   Plasmonic Magnesium Nanoparticles Are Efficient Nanoheaters [J].
West, Claire A. ;
Lomonosov, Vladimir ;
Pehlivan, Zeki Semih ;
Ringe, Emilie .
NANO LETTERS, 2023, 23 (23) :10964-10970
[25]   On the Origin of the Plasmonic Properties of Gold Nanoparticles [J].
Kim, Seokheon ;
Yoon, Sangwoon .
BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2021, 42 (08) :1058-1065
[26]   Atomistic electrodynamics simulations of plasmonic nanoparticles [J].
Chen, Xing ;
Liu, Pengchong ;
Jensen, Lasse .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (36)
[27]   Challenges for optical nanothermometry in biological environments [J].
Quintanilla, Marta ;
Henriksen-Lacey, Malou ;
Renero-Lecuna, Carlos ;
Liz-Marzan, Luis M. .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (11) :4223-4242
[28]   Plasmonic nanoparticles for a bottom-up approach to fabricate optical metamaterials [J].
Dintinger, Jose ;
Scharf, Toralf .
PHOTONIC AND PHONONIC PROPERTIES OF ENGINEERED NANOSTRUCTURES II, 2012, 8269
[29]   Fluorescent ZnCdS nanoparticles for nanothermometry of biological tissues [J].
Volkova, Elena ;
Skaptsov, Alexander ;
Konyukhova, Julia ;
Kochubey, Vyacheslav ;
Kozintseva, Marina .
SARATOV FALL MEETING 2014: OPTICAL TECHNOLOGIES IN BIOPHYSICS AND MEDICINE XVI; LASER PHYSICS AND PHOTONICS XVI; AND COMPUTATIONAL BIOPHYSICS, 2015, 9448
[30]   Gas Bubble Photonics: Manipulating Sonoluminescence Light with Fluorescent and Plasmonic Nanoparticles [J].
Maksymov, Ivan S. .
APPLIED SCIENCES-BASEL, 2022, 12 (17)