Robust feature selection for multiclass Support Vector Machines using second-order cone programming

被引:4
|
作者
Lopez, Julio [1 ]
Maldonado, Sebastian [2 ]
机构
[1] Univ Diego Portales, Fac Ingn, Santiago, Chile
[2] Univ Los Andes, Santiago, Chile
关键词
Feature selection; multiclass classification; second-order cone programming; Support Vector Machines; GENE SELECTION; CLASSIFICATION; OPTIMIZATION; FORMULATIONS;
D O I
10.3233/IDA-150773
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work addresses the issue of high dimensionality for linear multiclass Support Vector Machines (SVMs) using second-order cone programming (SOCP) formulations. These formulations provide a robust and efficient framework for classification, while an adequate feature selection process may improve predictive performance. We extend the ideas of SOCP-SVM from binary to multiclass classification, while a sequential backward elimination algorithm is proposed for variable selection, defining a contribution measure to determine the feature relevance. Experimental results with multiclass microarray datasets demonstrate the effectiveness of a low-dimensional data representation in terms of performance.
引用
收藏
页码:S117 / S133
页数:17
相关论文
共 50 条
  • [21] Group-penalized feature selection and robust twin SVM classification via second-order cone programming
    Lopez, Julio
    Maldonado, Sebastian
    NEUROCOMPUTING, 2017, 235 : 112 - 121
  • [22] Feature Scaling via Second-Order Cone Programming
    Liang, Zhizheng
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [23] A robust technique for array interpolation using second-order cone programming
    Pesavento, M
    Gershman, AB
    Luo, ZQ
    2001 IEEE WORKSHOP ON STATISTICAL SIGNAL PROCESSING PROCEEDINGS, 2001, : 217 - 220
  • [24] Second order cone programming formulations for feature selection
    Bhattacharyya, C
    JOURNAL OF MACHINE LEARNING RESEARCH, 2004, 5 : 1417 - 1433
  • [25] The support vector machine learning using the second order cone programming
    Debnath, R
    Muramatsu, M
    Takahashi, H
    2004 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, PROCEEDINGS, 2004, : 2991 - 2996
  • [26] Interior proximal algorithm with variable metric for second-order cone programming: applications to structural optimization and support vector machines
    Alvarez, Felipe
    Lopez, Julio
    Hector Ramirez, C.
    OPTIMIZATION METHODS & SOFTWARE, 2010, 25 (06): : 859 - 881
  • [27] Second order cone programming formulations for robust support vector ordinal regression machine
    Yang, Zhi-Xia
    Tian, Ying-He
    Deng, Nai-Yang
    OPTIMIZATION AND SYSTEMS BIOLOGY, 2007, 7 : 332 - +
  • [28] Second-order cone programming
    F. Alizadeh
    D. Goldfarb
    Mathematical Programming, 2003, 95 : 3 - 51
  • [29] Second-order cone programming
    Alizadeh, F
    Goldfarb, D
    MATHEMATICAL PROGRAMMING, 2003, 95 (01) : 3 - 51
  • [30] A New Method for Robust Beamforming Using Iterative Second-Order Cone Programming
    Liao, B.
    Tsui, K. M.
    Chan, S. C.
    2012 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS 2012), 2012, : 2569 - 2572