Robust feature selection for multiclass Support Vector Machines using second-order cone programming

被引:4
|
作者
Lopez, Julio [1 ]
Maldonado, Sebastian [2 ]
机构
[1] Univ Diego Portales, Fac Ingn, Santiago, Chile
[2] Univ Los Andes, Santiago, Chile
关键词
Feature selection; multiclass classification; second-order cone programming; Support Vector Machines; GENE SELECTION; CLASSIFICATION; OPTIMIZATION; FORMULATIONS;
D O I
10.3233/IDA-150773
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work addresses the issue of high dimensionality for linear multiclass Support Vector Machines (SVMs) using second-order cone programming (SOCP) formulations. These formulations provide a robust and efficient framework for classification, while an adequate feature selection process may improve predictive performance. We extend the ideas of SOCP-SVM from binary to multiclass classification, while a sequential backward elimination algorithm is proposed for variable selection, defining a contribution measure to determine the feature relevance. Experimental results with multiclass microarray datasets demonstrate the effectiveness of a low-dimensional data representation in terms of performance.
引用
收藏
页码:S117 / S133
页数:17
相关论文
共 50 条
  • [1] Robust kernel-based multiclass support vector machines via second-order cone programming
    Maldonado, Sebastian
    Lopez, Julio
    APPLIED INTELLIGENCE, 2017, 46 (04) : 983 - 992
  • [2] Robust kernel-based multiclass support vector machines via second-order cone programming
    Sebastián Maldonado
    Julio López
    Applied Intelligence, 2017, 46 : 983 - 992
  • [3] Robust nonparallel support vector machines via second-order cone programming
    Lopez, Julio
    Maldonado, Sebastian
    Carrasco, Miguel
    NEUROCOMPUTING, 2019, 364 : 227 - 238
  • [4] A second-order cone programming formulation for twin support vector machines
    Maldonado, Sebastian
    Lopez, Julio
    Carrasco, Miguel
    APPLIED INTELLIGENCE, 2016, 45 (02) : 265 - 276
  • [5] Quantum algorithms for Second-Order Cone Programming and Support Vector Machines
    Kerenidis, Iordanis
    Prakash, Anupam
    Szilagyi, Daniel
    QUANTUM, 2021, 5
  • [6] A second-order cone programming formulation for twin support vector machines
    Sebastián Maldonado
    Julio López
    Miguel Carrasco
    Applied Intelligence, 2016, 45 : 265 - 276
  • [7] Imbalanced data classification using second-order cone programming support vector machines
    Maldonado, Sebastian
    Lopez, Julio
    PATTERN RECOGNITION, 2014, 47 (05) : 2070 - 2079
  • [8] An embedded feature selection approach for support vector classification via second-order cone programming
    Maldonado, Sebastian
    Lopez, Julio
    INTELLIGENT DATA ANALYSIS, 2015, 19 (06) : 1259 - 1273
  • [9] Second-order cone programming formulations for robust multiclass classification
    Zhong, Ping
    Fukushima, Masao
    NEURAL COMPUTATION, 2007, 19 (01) : 258 - 282
  • [10] Multi-class second-order cone programming support vector machines
    Lopez, Julio
    Maldonado, Sebastian
    INFORMATION SCIENCES, 2016, 330 : 328 - 341