Periodic solutions for a class of second-order Hamiltonian systems of prescribed energy

被引:0
作者
Wu, Dong-Lun [1 ]
Li, Chun [2 ]
Yuan, Pengfei [2 ]
机构
[1] Southwest Petr Univ, Coll Sci, Chengdu 610500, Peoples R China
[2] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
periodic solutions; prescribed energy; Hamiltonian systems; saddle point theorem; CLOSED ORBITS; FIXED ENERGY;
D O I
10.14232/ejqtde.2015.1.77
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of non-constant periodic solutions for a class of conservative Hamiltonian systems with prescribed energy is obtained by the saddle point theorem.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 15 条
  • [1] CLOSED ORBITS OF FIXED ENERGY FOR SINGULAR HAMILTONIAN-SYSTEMS
    AMBROSETTI, A
    ZELATI, VC
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (04) : 339 - 362
  • [2] AMBROSETTI A, 1992, ANN I H POINCARE-AN, V9, P187
  • [3] Ambrosetti A, 1992, MEMOIRES SOC MATH FR, V49, P1, DOI [10.24003/msmf.362, DOI 10.24033/MSMF.362]
  • [4] [Anonymous], 1986, CBMS REG C SER MATH
  • [5] CRITICAL-POINT THEOREMS FOR INDEFINITE FUNCTIONALS
    BENCI, V
    RABINOWITZ, PH
    [J]. INVENTIONES MATHEMATICAE, 1979, 52 (03) : 241 - 273
  • [6] BENCI V, 1984, ANN I H POINCARE-AN, V1, P401
  • [7] Periodic solutions for second order Hamiltonian systems on an arbitrary energy surface
    Che, Chengfu
    Xue, Xiaoping
    [J]. ANNALES POLONICI MATHEMATICI, 2012, 105 (01) : 1 - 12
  • [8] Gluck H., 1983, ANN MATH STUD, V103, P65
  • [9] Hayashi K., 1983, TOKYO J MATH, V6, P473, DOI DOI 10.3836/TJM/1270213886
  • [10] Mawhin Jean, 1989, APPL MATH SCI, V74