On the zeros of the hyper-Bessel function

被引:11
|
作者
Chaggara, H. [1 ]
Ben Romdhane, N. [1 ]
机构
[1] Sousse Univ, Ecole Super Sci & Technol Hammam Sousse, Sousse, Tunisia
关键词
hyper-Bessel function; d-orthogonal Laguerre polynomials; Jensen polynomials; Laguerre-Polya class; 33C45; 42C05; D-ORTHOGONAL POLYNOMIALS; THEOREMS;
D O I
10.1080/10652469.2014.973191
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we prove that the zeros of the hyper-Bessel function are located on rays emanating from the origin with the positive real axis as ray, and that the only d-orthogonal Jensen polynomials associated with an entire function in the Laguerre-Polya class are the d-orthogonal Laguerre polynomials.
引用
收藏
页码:96 / 101
页数:6
相关论文
共 50 条
  • [1] Partial sums of hyper-Bessel function with applications
    Aktas, Ibrahim
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2020, 49 (01): : 380 - 388
  • [2] CERTAIN GEOMETRIC PROPERTIES OF A NORMALIZED HYPER-BESSEL FUNCTION
    Aktas, Ibrahim
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (01): : 179 - 186
  • [3] CERTAIN INTEGRATION FORMULAE FOR THE GENERALIZED k-BESSEL FUNCTIONS AND DELEURE HYPER-BESSEL FUNCTION
    Kim, Yongsup
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (02): : 523 - 532
  • [4] Geometric and monotonic properties of hyper-Bessel functions
    Aktas, Ibrahim
    Baricz, Arpad
    Singh, Sanjeev
    RAMANUJAN JOURNAL, 2020, 51 (02): : 275 - 295
  • [5] ON SOME PROPERTIES OF HYPER-BESSEL AND RELATED FUNCTIONS
    Aktas, I
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 30 - 37
  • [6] On Geometric Properties of Normalized Hyper-Bessel Functions
    Ahmad, Khurshid
    Mustafa, Saima
    Din, Muhey U.
    Rehman, Shafiq Ur
    Raza, Mohsan
    Arif, Muhammad
    MATHEMATICS, 2019, 7 (04)
  • [7] RESULTS OLD AND NEW ON THE HYPER-BESSEL EQUATION
    PARIS, RB
    WOOD, AD
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1987, 106 : 259 - 265
  • [8] Geometric and monotonic properties of hyper-Bessel functions
    İbrahim Aktaş
    Árpád Baricz
    Sanjeev Singh
    The Ramanujan Journal, 2020, 51 : 275 - 295
  • [9] A family of hyper-Bessel functions and convergent series in them
    Jordanka Paneva-Konovska
    Fractional Calculus and Applied Analysis, 2014, 17 : 1001 - 1015
  • [10] A family of hyper-Bessel functions and convergent series in them
    Paneva-Konovska, Jordanka
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (04) : 1001 - 1015