Stability result for elliptic inverse periodic coefficient problem by partial Dirichlet-to-Neumann map

被引:6
作者
Choulli, Mourad [1 ]
Kian, Yavar [2 ]
Soccorsi, Eric [2 ]
机构
[1] Univ Lorraine, Inst Elie Cartan Lorraine, CNRS, UMR 7502, Blvd Aiguillettes,BP 70239, F-54506 Vandoeuvre Les Nancy, France
[2] Aix Marseille Univ, Univ Toulon, CNRS, CPT, Marseille, France
关键词
Elliptic equation; periodic scalar potential; infinite cylindrical waveguide; stability inequality; partial data; Carleman estimate; BOUNDARY-VALUE PROBLEM; CALDERON PROBLEM; STABLE DETERMINATION; CONDUCTIVITY PROBLEM; CAUCHY DATA; UNIQUENESS;
D O I
10.4171/JST/212
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the inverse problem of identifying a periodic potential perturbation of the Dirichlet Laplacian acting in an infinite cylindrical domain, whose cross section is assumed to be bounded. We prove log-log stable determination of the potential with respect to the partial Dirichlet-to-Neumannmap, where the Neumann data is taken on slightlymore than half of the boundary of the domain.
引用
收藏
页码:733 / 768
页数:36
相关论文
共 39 条
[1]  
[Anonymous], 1975, METHODS MODERN MATH
[2]  
[Anonymous], 1978, METHODS MODERN MATH
[3]  
[Anonymous], 1988, Applicable Analysis, DOI DOI 10.1080/00036818808839730
[4]   NULL-CONTROL AND MEASURABLE SETS [J].
Apraiz, Jone ;
Escauriaza, Luis .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2013, 19 (01) :239-254
[5]   An inverse stability result for non-compactly supported potentials by one arbitrary lateral Neumann observation [J].
Bellassoued, M. ;
Kian, Y. ;
Soccorsi, E. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (10) :7535-7562
[6]   STABILITY AND UNIQUENESS FOR A TWO-DIMENSIONAL INVERSE BOUNDARY VALUE PROBLEM FOR LESS REGULAR POTENTIALS [J].
Blasten, Eemeli ;
Imanuvilov, Oleg Yu. ;
Yamamoto, Masahiro .
INVERSE PROBLEMS AND IMAGING, 2015, 9 (03) :709-723
[7]   Recovering a potential from Cauchy data in the two-dimensional case [J].
Bukhgeim, A. L. .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2008, 16 (01) :19-33
[8]   Recovering a potential from partial Cauchy data [J].
Bukhgeim, AL ;
Uhlmann, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (3-4) :653-668
[9]   Stability estimates for the Calderon problem with partial data [J].
Caro, Pedro ;
Ferreira, David Dos Santos ;
Ruiz, Alberto .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (03) :2457-2489
[10]   Stability estimates for the Radon transform with restricted data and applications [J].
Caro, Pedro ;
Ferreira, David Dos Santos ;
Ruiz, Alberto .
ADVANCES IN MATHEMATICS, 2014, 267 :523-564