New Residual Based Stabilization Method for the Elasticity Problem

被引:2
|
作者
Li, Minghao [1 ]
Shi, Dongyang [2 ]
Dai, Ying [3 ]
机构
[1] Henan Univ Technol, Coll Sci, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, Zhengzhou 450001, Henan, Peoples R China
[3] Tongji Univ, Sch Aerosp Engn & Appl Mech, Shanghai 200092, Peoples R China
关键词
Elasticity; MFEM; residuals; stabilization; MIXED FINITE-ELEMENTS; LEAST-SQUARES METHODS; LINEAR ELASTICITY; SYMMETRIC FORMULATION; RECTANGULAR GRIDS; PLANE ELASTICITY; EQUATIONS; TENSORS; FAMILY;
D O I
10.4208/aamm.2016.m1464
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the mixed finite element method (MFEM) of the elasticity problem in two and three dimensions (2D and 3D). We develop a new residual based stabilization method to overcome the inf-sup difficulty, and use Langrange elements to approximate the stress and displacement. The new method is unconditionally stable, and its stability can be obtained directly from Cea's lemma. Optimal error estimates for the H-1-norm of the displacement and H(div)-norm of the stress can be obtained at the same time. Numerical results show the excellent stability and accuracy of the new method.
引用
收藏
页码:100 / 113
页数:14
相关论文
共 50 条
  • [11] The Stabilized Nonconforming Virtual Element Method for Linear Elasticity Problem
    Jikun Zhao
    Tianle Wang
    Bei Zhang
    Journal of Scientific Computing, 2022, 92
  • [12] The Method of Numerical Analysis for the Elasticity Problem with Singularity
    Rukavishnikov, V. A.
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM-2015), 2016, 1738
  • [13] A new numerical method for the solution of the second boundary value problem of elasticity for bodies with cracks
    Kanaun, S
    Romero, V
    Bernal, J
    REVISTA MEXICANA DE FISICA, 2001, 47 (04) : 309 - 323
  • [14] A NEW ELASTICITY ELEMENT MADE FOR ENFORCING WEAK STRESS SYMMETRY
    Cockburn, Bernardo
    Gopalakrishnan, Jayadeep
    Guzman, Johnny
    MATHEMATICS OF COMPUTATION, 2010, 79 (271) : 1331 - 1349
  • [15] New H(div)-conforming multiscale hybrid-mixed methods for the elasticity problem on polygonal meshes
    Devloo, Philippe R. B.
    Farias, Agnaldo M.
    Gomes, Sonia M.
    Pereira, Weslley
    dos Santos, Antonio J. B.
    Valentin, Frederic
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (03): : 1005 - 1037
  • [16] A new stabilization technique for the nonconforming Crouzeix-Raviart element applied to linear elasticity
    Lamichhane, Bishnu P.
    APPLIED MATHEMATICS LETTERS, 2015, 39 : 35 - 41
  • [17] A residual based a posteriori error estimator for an augmented mixed finite element method in linear elasticity
    Barrios, Tomas P.
    Gatica, Gabriel N.
    Gonzalez, Maria
    Heuer, Norbert
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2006, 40 (05): : 843 - 869
  • [18] Weighted finite element method for an elasticity problem with singularity
    Rukavishnikov, V. A.
    Nikolaev, S. G.
    DOKLADY MATHEMATICS, 2013, 88 (03) : 705 - 709
  • [19] Boundary element method for the Cauchy problem in linear elasticity
    Marin, L
    Elliott, L
    Ingham, DB
    Lesnic, D
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2001, 25 (09) : 783 - 793
  • [20] Factorization Method in the Geometric Inverse Problem of Static Elasticity
    Shifrin, E. I.
    MECHANICS OF SOLIDS, 2016, 51 (05) : 562 - 570